# indonesia-bert-sentiment-classification **Repository Path**: modelee/indonesia-bert-sentiment-classification ## Basic Information - **Project Name**: indonesia-bert-sentiment-classification - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 3 - **Forks**: 0 - **Created**: 2023-05-24 - **Last Updated**: 2025-07-25 ## Categories & Tags **Categories**: llm **Tags**: None ## README Indonesian BERT Base Sentiment Classifier is a sentiment-text-classification model. The model was originally the pre-trained [IndoBERT Base Model (phase1 - uncased)](https://huggingface.co/indobenchmark/indobert-base-p1) model using [Prosa sentiment dataset](https://github.com/indobenchmark/indonlu/tree/master/dataset/smsa_doc-sentiment-prosa) ## How to Use ### As Text Classifier ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForSequenceClassification pretrained= "mdhugol/indonesia-bert-sentiment-classification" model = AutoModelForSequenceClassification.from_pretrained(pretrained) tokenizer = AutoTokenizer.from_pretrained(pretrained) sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) label_index = {'LABEL_0': 'positive', 'LABEL_1': 'neutral', 'LABEL_2': 'negative'} pos_text = "Sangat bahagia hari ini" neg_text = "Dasar anak sialan!! Kurang ajar!!" result = sentiment_analysis(pos_text) status = label_index[result[0]['label']] score = result[0]['score'] print(f'Text: {pos_text} | Label : {status} ({score * 100:.3f}%)') result = sentiment_analysis(neg_text) status = label_index[result[0]['label']] score = result[0]['score'] print(f'Text: {neg_text} | Label : {status} ({score * 100:.3f}%)') ```