# industry-classification **Repository Path**: modelee/industry-classification ## Basic Information - **Project Name**: industry-classification - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-05-23 - **Last Updated**: 2024-04-02 ## Categories & Tags **Categories**: llm **Tags**: None ## README --- language: "en" thumbnail: "https://huggingface.co/sampathkethineedi" tags: - distilbert - pytorch - tensorflow - text-classification - industry - buisiness - description - multi-class - classification liscence: "mit" inference: false --- # industry-classification ## Model description DistilBERT Model to classify a business description into one of **62 industry tags**. Trained on 7000 samples of Business Descriptions and associated labels of companies in India. ## How to use PyTorch and TF models available ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("sampathkethineedi/industry-classification") model = AutoModelForSequenceClassification.from_pretrained("sampathkethineedi/industry-classification") industry_tags = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) industry_tags("Stellar Capital Services Limited is an India-based non-banking financial company ... loan against property, management consultancy, personal loans and unsecured loans.") '''Ouput''' [{'label': 'Consumer Finance', 'score': 0.9841355681419373}] ``` ## Limitations and bias Training data is only for Indian companies