# swin-tiny-patch4-window7-224-shortSleeveCleanedData **Repository Path**: modelee/swin-tiny-patch4-window7-224-shortSleeveCleanedData ## Basic Information - **Project Name**: swin-tiny-patch4-window7-224-shortSleeveCleanedData - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 4 - **Forks**: 0 - **Created**: 2023-05-23 - **Last Updated**: 2025-09-02 ## Categories & Tags **Categories**: llm **Tags**: None ## README --- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-shortSleeveCleanedData results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.994535519125683 --- # swin-tiny-patch4-window7-224-shortSleeveCleanedData This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0355 - Accuracy: 0.9945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 7 - total_train_batch_size: 56 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1819 | 1.0 | 147 | 0.0471 | 0.9880 | | 0.1431 | 2.0 | 294 | 0.0457 | 0.9891 | | 0.1001 | 3.0 | 441 | 0.0392 | 0.9891 | | 0.116 | 4.0 | 588 | 0.0451 | 0.9880 | | 0.1144 | 5.0 | 735 | 0.0398 | 0.9902 | | 0.0787 | 6.0 | 882 | 0.0441 | 0.9902 | | 0.0998 | 7.0 | 1029 | 0.0320 | 0.9902 | | 0.124 | 8.0 | 1176 | 0.0364 | 0.9902 | | 0.103 | 9.0 | 1323 | 0.0395 | 0.9880 | | 0.0591 | 10.0 | 1470 | 0.0299 | 0.9913 | | 0.0445 | 11.0 | 1617 | 0.0302 | 0.9913 | | 0.0684 | 12.0 | 1764 | 0.0350 | 0.9880 | | 0.0358 | 13.0 | 1911 | 0.0408 | 0.9891 | | 0.0548 | 14.0 | 2058 | 0.0382 | 0.9902 | | 0.0611 | 15.0 | 2205 | 0.0331 | 0.9923 | | 0.0231 | 16.0 | 2352 | 0.0355 | 0.9945 | | 0.046 | 17.0 | 2499 | 0.0321 | 0.9934 | | 0.0648 | 18.0 | 2646 | 0.0327 | 0.9923 | | 0.0565 | 19.0 | 2793 | 0.0320 | 0.9923 | | 0.0413 | 20.0 | 2940 | 0.0327 | 0.9923 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3