# wav2vec2_tiny_random_robust **Repository Path**: modelee/wav2vec2_tiny_random_robust ## Basic Information - **Project Name**: wav2vec2_tiny_random_robust - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 3 - **Forks**: 0 - **Created**: 2023-05-24 - **Last Updated**: 2025-05-22 ## Categories & Tags **Categories**: llm **Tags**: None ## README --- language: en datasets: - librispeech_asr tags: - automatic-speech-recognition license: apache-2.0 --- ## Test model To test this model run the following code: ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC import torchaudio import torch ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2_tiny_random_robust") def load_audio(batch): batch["samples"], _ = torchaudio.load(batch["file"]) return batch ds = ds.map(load_audio) input_values = torch.nn.utils.rnn.pad_sequence([torch.tensor(x[0]) for x in ds["samples"][:10]], batch_first=True) # forward logits = model(input_values).logits pred_ids = torch.argmax(logits, dim=-1) # dummy loss dummy_labels = pred_ids.clone() dummy_labels[dummy_labels == model.config.pad_token_id] = 1 # can't have CTC blank token in label dummy_labels = dummy_labels[:, -(dummy_labels.shape[1] // 4):] # make sure labels are shorter to avoid "inf" loss (can still happen though...) loss = model(input_values, labels=dummy_labels).loss ```