# se-kge **Repository Path**: moon_mx/se-kge ## Basic Information - **Project Name**: se-kge - **Description**: Gengchen Mai, Krzysztof Janowicz, Ling Cai, Rui Zhu, Blake Regalia, Bo Yan, Meilin Shi, Ni Lao. SE-KGE: A Location-Aware Knowledge Graph Embedding Model for Geographic Question Answering and Spatial Semantic Lifting. Transactions in GIS. DOI:10.1111/TGIS.12629 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-07-01 - **Last Updated**: 2022-06-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Geographic Question Answering based on Knowledge Graph Embedding Techniques Code for recreating the results in [our Transactions in GIS paper](https://onlinelibrary.wiley.com/doi/full/10.1111/tgis.12629) as well as [our K-CAP 2019 paper](https://dl.acm.org/doi/10.1145/3360901.3364432) . ## [SE‐KGE : A location‐Aware Knowledge Graph Embedding Model for Geographic Question Answering and Spatial Semantic Lifting](https://onlinelibrary.wiley.com/doi/full/10.1111/tgis.12629) ### Related Link 1. [Transactions in GIS Paper](https://onlinelibrary.wiley.com/doi/full/10.1111/tgis.12629) 2. [Arxiv Paper](https://arxiv.org/abs/2004.14171) 3. [Esri UC 2020 Presentation](https://youtu.be/UO4wKnLPmDgE) 4. [Esri UC 2020 Presentation Slides](http://www.geog.ucsb.edu/~gengchen_mai/presentations/2020-EsriUC2020-Pos_Enc_QA.pdf) ## [Contextual Graph Attention for Answering Logical Queries over Incomplete Knowledge Graphs](https://dl.acm.org/doi/10.1145/3360901.3364432) ### Related Link 1. [K-CAP 2019 Paper](https://dl.acm.org/doi/10.1145/3360901.3364432) 2. [Arxiv Paper](https://arxiv.org/abs/1910.00084) 3. [K-CAP 2019 Presentation Slides](http://www.geog.ucsb.edu/~gengchen_mai/presentations/2019-K-CAP2019.pdf) Please visit [my Homepage](http://www.geog.ucsb.edu/~gengchen_mai/) for more information. ## Model Archtecture ### Geographic Question Answering

geoqa

The location-aware entity encoder architecture:

ent_enc

### Spatial Semantic Lifting

spa_sem_lift

## Dependencies - Python 2.7+ - Torch 1.0.1+ - numpy 1.16.0+ - matplotlib 2.2.4+ - sklearn 0.20.3+ - geopandas 0.6.1+ - shapely 1.6.4+ - pyproj 2.2.2+ To set up the code , run `python setup.py`. Note that the first three are required for model training and testing. The rest are used for visualization which is optional. ## Data You can download the GeoQA dataset from [here](https://drive.google.com/file/d/1hbaw16RuSw3HGzhWxFReqWPbLXEs1GAJ/view?usp=sharing). Unextract it and put them in `graphqa/dbgeo/`. ## Code Usage This code is implemented in Python 2.7. All codes are in `graphqa/netquery/`. ### Geographic Question Answering For each baseline in Table 3: 1. `GQE_{diag}`: run `graphqa/dbgeo_geoqa_gqe.sh`; 2. `GQE`: run `graphqa/dbgeo_geoqa_gqe_diag.sh`; 3. `CGA`: run `graphqa/dbgeo_geoqa_cga.sh`; 4. `SE-KGE_{direct}`: run `graphqa/dbgeo_geoqa_direct.sh`; 5. `SE-KGE_{pt}`: run `graphqa/dbgeo_geoqa_direct.sh`; 6. `SE-KGE_{space}`: run `graphqa/dbgeo_geoqa_space.sh`; 7. `SE-KGE_{full}`: run `graphqa/dbgeo_geoqa_full.sh`. ### Spatial Semantic Lifting For each baseline in Table 5: 1. `SE-KGE_{space}`: run `graphqa/dbgeo_spa_sem_lift_space.sh`; 2. `SE-KGE_{ssl}`: run `graphqa/dbgeo_spa_sem_lift_ssl.sh`. ## Reference If you find our work useful in your research please consider citing our paper. ``` @article{mai2020se, title={{SE}-{KGE}: A Location-Aware Knowledge Graph Embedding Model for Geographic Question Answering and Spatial Semantic Lifting}, author={Mai, Gengchen and Janowicz, Krzysztof and Cai, Ling and Zhu, Rui and Regalia, Blake and Yan, Bo and Shi, Meilin and Lao, Ni}, journal={Transactions in GIS}, year={2020}, doi={10.1111/tgis.12629} } @inproceedings{mai2019contextual, title={Contextual Graph Attention for Answering Logical Queries over Incomplete Knowledge Graphs}, author={Mai, Gengchen and Janowicz, Krzysztof and Yan, Bo and Zhu, Rui and Cai, Ling and Lao, Ni}, booktitle={Proceedings of the 10th International Conference on Knowledge Capture}, pages={171--178}, year={2019} } ``` The location encoder component in SE-KGE model is based on [Space2Vec](https://github.com/gengchenmai/space2vec). Read [our ICLR 2020 paper](https://openreview.net/forum?id=rJljdh4KDH) for a comprehensive understanding: ``` @inproceedings{space2vec_iclr2020, title={Multi-Scale Representation Learning for Spatial Feature Distributions using Grid Cells}, author={Mai, Gengchen and Janowicz, Krzysztof and Yan, Bo and Zhu, Rui and Cai, Ling and Lao, Ni}, booktitle={The Eighth International Conference on Learning Representations}, year={2020}, organization={openreview} } ``` Note that a part of our code is based on the [code](https://github.com/williamleif/graphqembed) of [Hamilton et al's NIPS 2018 paper](https://papers.nips.cc/paper/7473-embedding-logical-queries-on-knowledge-graphs.pdf): ``` @inproceedings{hamilton2018embedding, title={Embedding logical queries on knowledge graphs}, author={Hamilton, Will and Bajaj, Payal and Zitnik, Marinka and Jurafsky, Dan and Leskovec, Jure}, booktitle={Advances in Neural Information Processing Systems}, pages={2026--2037}, year={2018} } ```