# gail-driver **Repository Path**: myth1665/gail-driver ## Basic Information - **Project Name**: gail-driver - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-05-07 - **Last Updated**: 2021-11-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # gail-driver Utilities and scripts used to perform experiments described in "[Imitating Driver Behavior with Generative Adversarial Networks](https://arxiv.org/abs/1701.06699)". Built on [rllab](https://github.com/openai/rllab) and source code for [generative adversarial imitation learning](https://github.com/openai/imitation.git). Train a model from the command line by running: ``` python scripts/train_gail_model.py ``` ![](https://github.com/sisl/gail-driver/blob/master/gifs/congested.gif?raw=true) An ego vehicle trained through Generative Adversarial Imitation Learning (blue) navigating a congested highway scene. # Requirements Julia 0.5 ForwardNets.jl ([nextgen branch](https://github.com/tawheeler/ForwardNets.jl/tree/nextgen)) AutomotiveDrivingModels.jl ([gail branch](https://github.com/akuefler/AutomotiveDrivingModels.jl)) Note: This repository is not up to date with recent changes to the following Julia packages. We recommend using the following commits of these packages: [AutoViz.jl](https://github.com/sisl/autoviz.jl) (commit 274dd08) [NGSIM.jl](https://github.com/sisl/NGSIM.jl) (commit f16d684) # References Jonathan Ho, Stefano Ermon. "[Generative Adversarial Imitation Learning](https://cs.stanford.edu/~ermon/papers/imitation_nips2016_main.pdf)". _Advances in Neural Information Processing Systems (NIPS), 2016_ Yan Duan, Xi Chen, Rein Houthooft, John Schulman, Pieter Abbeel. "[Benchmarking Deep Reinforcement Learning for Continuous Control](http://arxiv.org/abs/1604.06778)". _Proceedings of the 33rd International Conference on Machine Learning (ICML), 2016._