# kontiki **Repository Path**: nemo777/kontiki ## Basic Information - **Project Name**: kontiki - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-01-08 - **Last Updated**: 2022-01-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Kontiki - the continuous time toolkit ==================================== Kontiki is a toolkit for continuous-time structure from motion. In short, it can estimate a trajectory (and 3D structure) from a set of measurements. The documentation is available at https://hovren.github.io/kontiki/. Example: Visual-inertial structure from motion --------------------------------------------- import numpy as np import itertools from kontiki import trajectories, sensors, TrajectoryEstimator import kontiki.measurements as M views, landmarks = load_my_sfm_data() trajectory = trajectories.UniformSE3SplineTrajectory() trajectory.extend_to(some_max_time, np.eye(4)) imu = sensors.BasicImu() camera = sensors.PinholeCamera(720, 1280, 0.03, my_camera_matrix) gyro_meas = [M.GyroscopeMeasurement(imu, t, x) for t, x in my_gyro_data] acc_meas = [M.AccelerometerMeasurement(imu, t, x) for t, x in my_acc_data] im_meas = [M.StaticRsCameraMeasurement(camera, obs) for v in view for obs in v.observations] estimator = TrajectoryEstimator(trajectory) for m in itertools.chain(gyro_meas, acc_meas, im_meas): estimator.add_measurement(m) summary = estimator.solve() Installation ============ See the documentation at https://hovren.github.io/kontiki/users/install.html.