# dh_live_hl **Repository Path**: nextteam/dh_live_hl ## Basic Information - **Project Name**: dh_live_hl - **Description**: 基于DH_Live的开源数字人项目,此版本是基于B站刘悦的windows整合包修改为Linux的整合包。 - **Primary Language**: Unknown - **License**: CC-BY-SA-4.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 1 - **Created**: 2024-08-14 - **Last Updated**: 2025-01-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Real-time Live Streaming Digital Human # 实时直播数字人 [bilibili video](https://www.bilibili.com/video/BV1Ppv1eEEgj/?vd_source=53601feee498369e726af7dbc2dae349) ### Video Example https://github.com/user-attachments/assets/7e0b5bc2-067b-4048-9f88-961afed12478 ## Overview This project is a real-time live streaming digital human powered by few-shot learning. It is designed to run smoothly on all 30 and 40 series graphics cards, ensuring a seamless and interactive live streaming experience. ### Key Features - **Real-time Performance**: The digital human can interact in real-time with 25+ fps for common NVIDIA 30 and 40 series GPUs - **Few-shot Learning**: The system is capable of learning from a few examples to generate realistic responses. ## Usage ### Unzip the Model File First, navigate to the `checkpoint` directory and unzip the model file: ```bash cd checkpoint gzip -d -c render.pth.gz.001 > render.pth ``` ### Prepare Your Video Next, prepare your video using the data_preparation script. Replace YOUR_VIDEO_PATH with the path to your video: ```bash python data_preparation YOUR_VIDEO_PATH ``` The result (video_info) will be stored in the ./video_data directory. ### Run with Audio File Run the demo script with an audio file. Make sure the audio file is in .wav format with a sample rate of 16kHz and 16-bit single channel. Replace video_data/test with the path to your video_info file, video_data/audio0.wav with the path to your audio file, and 1.mp4 with the desired output video path: ```bash python demo.py video_data/test video_data/audio0.wav 1.mp4 ``` ### Real-Time Run with Microphone For real-time operation using a microphone, simply run the following command: ```bash python demo_avatar.py ``` ## Acknowledgements We would like to thank the contributors of [wavlip](https://github.com/Rudrabha/Wav2Lip), [dinet](https://github.com/MRzzm/DINet), [livespeechportrait](https://github.com/YuanxunLu/LiveSpeechPortraits) repositories, for their open research and contributions. ## License This project is licensed under the MIT License. ## Contact For any questions or suggestions, please contact us at [kleinlee1@outlook.com]. ## QA No matching distribution found for tb-nightly ```shell #pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pip install tb_nightly==2.14.0a20230808 -i https://mirrors.aliyun.com/pypi/simple pip install realesrgan pip install moviepy pip install transformers~=4.41.1 #pip install --upgrade torchvision ``` No module named 'torchvision.transforms.functional_tensor' ```shell /home/mty/miniconda3/envs/dhlive311/lib/python3.11/site-packages/basicsr/data/degradations.py 修改: torchvision.transforms.functional_tensor 为 torchvision.transforms._functional_tensor ``` ```shell #下载模型到conda中,需要指定模型路径,不要下载 Downloading: "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth" to /home/mty/miniconda3/envs/dhlive311/lib/python3.11/site-packages/gfpgan/weights/GFPGANv1.4.pth ```