# pytorch-mobilenet **Repository Path**: notabigfish/pytorch-mobilenet ## Basic Information - **Project Name**: pytorch-mobilenet - **Description**: PyTorch MobileNet Implementation of "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-07-07 - **Last Updated**: 2020-12-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Implementation of MobileNet, modified from https://github.com/pytorch/examples/tree/master/imagenet. imagenet data is processed [as described here](https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md#download-the-imagenet-dataset) nohup python main.py -a mobilenet ImageNet-Folder > log.txt & Results - sgd : top1 68.848 top5 88.740 [download](https://pan.baidu.com/s/1nuRcK3Z) - rmsprop: top1 0.104 top5 0.494 - rmsprop init from sgd : top1 69.526 top5 88.978 [donwload](https://pan.baidu.com/s/1eRCxYKU) - paper: top1 70.6 Benchmark: Titan-X, batchsize = 16 ``` resnet18 : 0.004030 alexnet : 0.001395 vgg16 : 0.002310 squeezenet : 0.009848 mobilenet : 0.073611 ``` Titan-X, batchsize = 1 ``` resnet18 : 0.003688 alexnet : 0.001179 vgg16 : 0.002055 squeezenet : 0.003385 mobilenet : 0.076977 ``` --------- ``` class Net(nn.Module): def __init__(self): super(Net, self).__init__() def conv_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True) ) def conv_dw(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), nn.BatchNorm2d(inp), nn.ReLU(inplace=True), nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True), ) self.model = nn.Sequential( conv_bn( 3, 32, 2), conv_dw( 32, 64, 1), conv_dw( 64, 128, 2), conv_dw(128, 128, 1), conv_dw(128, 256, 2), conv_dw(256, 256, 1), conv_dw(256, 512, 2), conv_dw(512, 512, 1), conv_dw(512, 512, 1), conv_dw(512, 512, 1), conv_dw(512, 512, 1), conv_dw(512, 512, 1), conv_dw(512, 1024, 2), conv_dw(1024, 1024, 1), nn.AvgPool2d(7), ) self.fc = nn.Linear(1024, 1000) def forward(self, x): x = self.model(x) x = x.view(-1, 1024) x = self.fc(x) return x ```