# spgp_py **Repository Path**: nothing_but_nothing/spgp_py ## Basic Information - **Project Name**: spgp_py - **Description**: Sparse Gaussian Processes using Pseudo-inputs - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-15 - **Last Updated**: 2025-01-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Sparse Gaussian Processes using Pseudo Inputs ##### Implementation in Python This is repository contains a python implementation of Sparse Gaussian Processes using Pseudo Inputs published in NIPS 2005. [[LINK]](http://www.gatsby.ucl.ac.uk/~snelson/SPGP_talk.pdf) In order to use this package, please import the package as follows - ```python import spgp ``` This package contains two functions: * **spgp.utilityfn**: Contains the function for likelihood calculation and estimating the mean & variance using learned SPGP hyper-params. * **spgp.minimize**: Uses Carl's Rasmussen's implementation for finding a local minimum of a nonlinear multivariate function. This repository also contains an example implementation for a 2D spatial regression problem. This example uses ```plotly``` for generating the outputs and these are saved as an offline plot in the ```output``` folder. To use these codes, please refer the following publications: 1. Rajat Mishra, Mandar Chitre, and Sanjay Swarup. "Online Informative Path Planning using Sparse Gaussian Processes." *2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO)*. IEEE, 2018. 2. Edward Snelson and Zoubin Ghahramani. "Sparse Gaussian Processes using pseudo-inputs." *Advances in neural information processing systems*. 2006.