# DTI **Repository Path**: ntdai/dti ## Basic Information - **Project Name**: DTI - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2026-01-21 - **Last Updated**: 2026-01-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CBKG-DTI This repository is the implementation of CBKG-DTI: CBKG-DTI: multi-level knowledge distillation and biomedical knowledge graph for drug-target interaction prediction CBKG-DTI consists of three components: HAKE-based teacher model, HGAT-based student model, and multi-level knowledge distillation. 1. Desritory is organised as follows: dataset : biomedical knowledge graph (MAN-KG), training, validing and testing data in the 5-fold cv. model: 2. Requirements The code has been tested running under Python 3.6, with the following packages installed (along with their dependencies): pytorch ==1.10.0 cuda == 1.0.2 dgl ==0.7.1 dgllife == 0.3.2 scikit-learn == 0.24.1 numpy == 1.23.5 tokenizers == 0.12.1 3 Usage use PyCharm to run main.py