# ADMPO **Repository Path**: nutquant/ADMPO ## Basic Information - **Project Name**: ADMPO - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-03-05 - **Last Updated**: 2025-03-05 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ADMPO: Any-step Dynamics Model for Policy Optimization [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://github.com/HxLyn3/ADMPO/blob/main/LICENSE) This is the code for the paper [Any-step Dynamics Model Improves Future Predictions for Online and Offline Reinforcement Learning](https://openreview.net/forum?id=JZCxlrwjZ8) in ICLR 2025. ## Requirements To install all the required dependencies: 1. Install MuJoCo engine, which can be downloaded from [here](https://mujoco.org/download). 2. Install Python packages listed in `requirements.txt` using `pip install -r requirements.txt`. You should specify the version of `mujoco-py` in `requirements.txt` depending on the version of MuJoCo engine you have installed. 3. Manually download and install `d4rl` package from [here](https://github.com/rail-berkeley/d4rl). 4. Manually download and install `neorl` package from [here](https://github.com/polixir/NeoRL). ## Run an experiment ### Online Setting ```shell python main4online.py --env-name [Env name] ``` The config files act as defaults for a task. They are all located in `config`. `--env-name` refers to the config files in `config/` including Hopper-v3, Walker2d-v3, AntTruncatedObs-v3, and HumanoidTruncatedObs-v3. All results will be stored in the `result` folder. For example, run ADMPO-ON on Hopper: ```bash python main4online.py --env-name Hopper-v3 ``` ### Offline Setting ```shell python main4offline.py --env [Env] --env-name [Env name] ``` The config files act as defaults for a task. They are all located in `config`. `--env` refers to the benchmark, D4RL or NeoRL. `--env-name` refers to the config files in `config/`. All results will be stored in the `result` folder. For example, run ADMPO-OFF on hopper-medium-v2 dataset of D4RL benchmark: ```bash python main4offline.py --env d4rl --env-name hopper-medium-v2 ``` ## Citation If you find this repository useful for your research, please cite: ```bash @inproceedings{ admpo, author = {Haoxin Lin and Yu{-}Yan Xu and Yihao Sun and Zhilong Zhang and Yi{-}Chen Li and Chengxing Jia and Junyin Ye and Jiaji Zhang and Yang Yu}, title = {Any-step Dynamics Model Improves Future Predictions for Online and Offline Reinforcement Learning}, booktitle = {The 13th International Conference on Learning Representations (ICLR'25)}, year = {2025}, address = {Singapore} } ```