# alpha2 **Repository Path**: nutquant/alpha2 ## Basic Information - **Project Name**: alpha2 - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-10-25 - **Last Updated**: 2024-10-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # $\text{Alpha}^2$: Discovering Logical Formulaic Alphas using Deep Reinforcement Learning [Link to paper](http://arxiv.org/abs/2406.16505) This repository contains pseudocode and algorithms for the paper "$\text{Alpha}^2$: Discovering Logical Formulaic Alphas using Deep Reinforcement Learning". It does not contain a runnnable version of $\text{Alpha}^2$, but provides the design principals and code structures. # Code Structure - `utils`: utility functions for logging and loading configs - `computation_data.py`: Generates a data file for the experiment ro run - `run.py`: main file for running the experiment - `run.sh`: script to start an experiment: first generate computation data, then start the runner - `configs` configuration files - `trainer.py`: definition of MCTS and network trainer actors for ray - `expression` contains definition of the environment, including: - `evaluate.py` defines teh evaluation function - `legal_actions.py` calculates the legal actions when expanding an MCTS node - `meta_data.py` meta data of stock/futures market - `operands.py` definition of operands - `operators.py` definition of operators - `tokens.py` tokens wrap the implementation of operators, and implements a "validity_check" function for legal action check - `port.py` avoid ray recursive import - `structure.py` defines the structure of tokens, tree nodes, dimensions and values - `tree.py` defines the structure and computation of expression trees - `mcts` contains MCTS and network related code, which is an modificated version of [alphadev](https://github.com/google-deepmind/alphadev) # Cite this work ```bibtex @article{xu2024textalpha2, title={$\text{Alpha}^2$: Discovering Logical Formulaic Alphas using Deep Reinforcement Learning}, author={Feng Xu and Yan Yin and Xinyu Zhang and Tianyuan Liu and Shengyi Jiang and Zongzhang Zhang}, journal={arXiv preprint arXiv:2406.16505}, year={2024} } ```