# d3rlpy **Repository Path**: nutquant/d3rlpy ## Basic Information - **Project Name**: d3rlpy - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-18 - **Last Updated**: 2021-03-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

# d3rlpy: An offline deep reinforcement learning library ![test](https://github.com/takuseno/d3rlpy/workflows/test/badge.svg) ![build](https://github.com/takuseno/d3rlpy/workflows/build/badge.svg) [![Documentation Status](https://readthedocs.org/projects/d3rlpy/badge/?version=latest)](https://d3rlpy.readthedocs.io/en/latest/?badge=latest) [![codecov](https://codecov.io/gh/takuseno/d3rlpy/branch/master/graph/badge.svg?token=AQ02USKN6Y)](https://codecov.io/gh/takuseno/d3rlpy) [![Maintainability](https://api.codeclimate.com/v1/badges/c9162eb736d0b0f612d8/maintainability)](https://codeclimate.com/github/takuseno/d3rlpy/maintainability) [![Gitter](https://img.shields.io/gitter/room/d3rlpy/d3rlpy)](https://gitter.im/d3rlpy/d3rlpy) ![MIT](https://img.shields.io/badge/license-MIT-blue) d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. ```py import d3rlpy # MDPDataset takes arrays of state transitions dataset = d3rlpy.dataset.MDPDataset(observations, actions, rewards, terminals) # train offline deep RL cql = d3rlpy.algos.CQL() cql.fit(dataset.episodes) # ready to control actions = cql.predict(x) ``` Documentation: https://d3rlpy.readthedocs.io ## key features ### :zap: Most Practical RL Library Ever - **offline RL**: d3rlpy supports state-of-the-art offline RL algorithms. Offline RL is extremely powerful when the online interaction is not feasible during training (e.g. robotics, medical). - **online RL**: d3rlpy also supports conventional state-of-the-art online training algorithms without any compromising, which means that you can solve any kinds of RL problems only with `d3rlpy`. - **advanced engineering**: d3rlpy is designed to implement the faster and efficient training algorithms. For example, you can train Atari environments with x4 less memory space and as fast as the fastest RL library. ### :beginner: Easy-To-Use API - **zero-knowledge of DL library**: d3rlpy provides many state-of-the-art algorithms through intuitive APIs. You can become a RL engineer even without knowing how to use deep learning libraries. - **scikit-learn compatibility**: d3rlpy is not only easy, but also completely compatible with scikit-learn API, which means that you can maximize your productivity with the useful scikit-learn's utilities. ### :rocket: Beyond State-Of-The-Art - **distributional Q function**: d3rlpy is the first library that supports distributional Q functions in the all algorithms. The distributional Q function is known as the very powerful method to achieve the state-of-the-performance. - **many tweek options**: d3rlpy is also the first to support N-step TD backup, ensemble value functions and data augmentation in the all algorithms, which lead you to the place no one ever reached yet. ## installation d3rlpy supports Linux, macOS and Windows. ### PyPI (recommended) [![PyPI version](https://badge.fury.io/py/d3rlpy.svg)](https://badge.fury.io/py/d3rlpy) ![PyPI - Downloads](https://img.shields.io/pypi/dm/d3rlpy) ``` $ pip install d3rlpy ``` ### Anaconda [![Anaconda-Server Badge](https://anaconda.org/conda-forge/d3rlpy/badges/version.svg)](https://anaconda.org/conda-forge/d3rlpy) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/d3rlpy/badges/platforms.svg)](https://anaconda.org/conda-forge/d3rlpy) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/d3rlpy/badges/downloads.svg)](https://anaconda.org/conda-forge/d3rlpy) ``` $ conda install -c conda-forge d3rlpy ``` ### Docker ![Docker Pulls](https://img.shields.io/docker/pulls/takuseno/d3rlpy) ``` $ docker run -it --gpus all --name d3rlpy takuseno/d3rlpy:latest bash ``` ### build from source (please try this if `core dumped` error occurs) ``` $ git clone https://github.com/takuseno/d3rlpy $ cd d3rlpy $ pip install Cython numpy # if not installed yet $ pip install -e . ``` ## supported algorithms | algorithm | discrete control | continuous control | offline RL? | |:-|:-:|:-:|:-:| | Behavior Cloning (supervised learning) | :white_check_mark: | :white_check_mark: | | | [Deep Q-Network (DQN)](https://www.nature.com/articles/nature14236) | :white_check_mark: | :no_entry: | | | [Double DQN](https://arxiv.org/abs/1509.06461) | :white_check_mark: | :no_entry: | | | [Deep Deterministic Policy Gradients (DDPG)](https://arxiv.org/abs/1509.02971) | :no_entry: | :white_check_mark: | | | [Twin Delayed Deep Deterministic Policy Gradients (TD3)](https://arxiv.org/abs/1802.09477) | :no_entry: | :white_check_mark: | | | [Soft Actor-Critic (SAC)](https://arxiv.org/abs/1812.05905) | :white_check_mark: | :white_check_mark: | | | [Batch Constrained Q-learning (BCQ)](https://arxiv.org/abs/1812.02900) | :white_check_mark: | :white_check_mark: | :white_check_mark: | | [Bootstrapping Error Accumulation Reduction (BEAR)](https://arxiv.org/abs/1906.00949) | :no_entry: | :white_check_mark: | :white_check_mark: | | [Advantage-Weighted Regression (AWR)](https://arxiv.org/abs/1910.00177) | :white_check_mark: | :white_check_mark: | :white_check_mark: | | [Conservative Q-Learning (CQL)](https://arxiv.org/abs/2006.04779) (recommended) | :white_check_mark: | :white_check_mark: | :white_check_mark: | | [Advantage Weighted Actor-Critic (AWAC)](https://arxiv.org/abs/2006.09359) | :no_entry: | :white_check_mark: | :white_check_mark: | | [Critic Reguralized Regression (CRR)](https://arxiv.org/abs/2006.15134) | :no_entry: | :white_check_mark: | :white_check_mark: | | [Policy in Latent Action Space (PLAS)](https://arxiv.org/abs/2011.07213) | :no_entry: | :white_check_mark: | :white_check_mark: | ## supported Q functions - [x] standard Q function - [x] [Quantile Regression](https://arxiv.org/abs/1710.10044) - [x] [Implicit Quantile Network](https://arxiv.org/abs/1806.06923) - [x] [Fully parametrized Quantile Function](https://arxiv.org/abs/1911.02140) (experimental) ## other features Basically, all features are available with every algorithm. - [x] evaluation metrics in a scikit-learn scorer function style - [x] export greedy-policy as TorchScript or ONNX - [x] parallel cross validation with multiple GPU - [x] [model-based algorithm](https://arxiv.org/abs/2005.13239) ## examples ### MuJoCo

```py import d3rlpy # prepare dataset dataset, env = d3rlpy.datasets.get_d4rl('hopper-medium-v0') # prepare algorithm cql = d3rlpy.algos.CQL(use_gpu=True) # train cql.fit(dataset, eval_episodes=dataset, n_epochs=100, scorers={ 'environment': d3rlpy.metrics.scorer.evaluate_on_environment(env), 'td_error': d3rlpy.metrics.scorer.td_error_scorer }) ``` See more datasets at [d4rl](https://github.com/rail-berkeley/d4rl). ### Atari 2600

```py import d3rlpy from sklearn.model_selection import train_test_split # prepare dataset dataset, env = d3rlpy.datasets.get_atari('breakout-expert-v0') # split dataset train_episodes, test_episodes = train_test_split(dataset, test_size=0.1) # prepare algorithm cql = d3rlpy.algos.DiscreteCQL(n_frames=4, q_func_factory='qr', scaler='pixel', use_gpu=True) # start training cql.fit(train_episodes, eval_episodes=test_episodes, n_epochs=100, scorers={ 'environment': d3rlpy.metrics.scorer.evaluate_on_environment(env), 'td_error': d3rlpy.metrics.scorer.td_error_scorer }) ``` See more Atari datasets at [d4rl-atari](https://github.com/takuseno/d4rl-atari). ### PyBullet

```py import d3rlpy # prepare dataset dataset, env = d3rlpy.datasets.get_pybullet('hopper-bullet-mixed-v0') # prepare algorithm cql = d3rlpy.algos.CQL(use_gpu=True) # start training cql.fit(dataset, eval_episodes=dataset, n_epochs=100, scorers={ 'environment': d3rlpy.metrics.scorer.evaluate_on_environment(env), 'td_error': d3rlpy.metrics.scorer.td_error_scorer }) ``` See more PyBullet datasets at [d4rl-pybullet](https://github.com/takuseno/d4rl-pybullet). ### Online Training ```py import d3rlpy import gym # prepare environment env = gym.make('HopperBulletEnv-v0') eval_env = gym.make('HopperBulletEnv-v0') # prepare algorithm sac = d3rlpy.algos.SAC(use_gpu=True) # prepare replay buffer buffer = d3rlpy.online.buffers.ReplayBuffer(maxlen=1000000, env=env) # start training sac.fit_online(env, buffer, n_steps=1000000, eval_env=eval_env) ``` ## tutorials Try a cartpole example on Google Colaboratory! - offline RL tutorial: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/takuseno/d3rlpy/blob/master/tutorials/cartpole.ipynb) - online RL tutorial: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/takuseno/d3rlpy/blob/master/tutorials/online.ipynb) ## contributions Any kind of contribution to d3rlpy would be highly appreciated! Please check the [contribution guide](CONTRIBUTING.md). The release planning can be checked at [milestones](https://github.com/takuseno/d3rlpy/milestones). ## community | Channel | Link | |:-|:-| | Chat | [Gitter](https://gitter.im/d3rlpy/d3rlpy) | | Issues | [GitHub Issues](https://github.com/takuseno/d3rlpy/issues) | | Discussion | [GitHub Discussions](https://github.com/takuseno/d3rlpy/discussions) ## family projects | Project | Description | |:-:|:-| | [d4rl-pybullet](https://github.com/takuseno/d4rl-pybullet) | An offline RL datasets of PyBullet tasks | | [d4rl-atari](https://github.com/takuseno/d4rl-atari) | A d4rl-style library of Google's Atari 2600 datasets | | [MINERVA](https://github.com/takuseno/minerva) | An out-of-the-box GUI tool for offline RL | ## citation ``` @misc{seno2020d3rlpy, author = {Takuma Seno}, title = {d3rlpy: An offline deep reinforcement library}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/takuseno/d3rlpy}} } ``` ## acknowledgement This work is supported by Information-technology Promotion Agency, Japan (IPA), Exploratory IT Human Resources Project (MITOU Program) in the fiscal year 2020.