# mjrl **Repository Path**: nutquant/mjrl ## Basic Information - **Project Name**: mjrl - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-06 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # RL for MuJoCo This package contains implementations of various RL algorithms for continuous control tasks simulated with [MuJoCo.](http://www.mujoco.org/) # Installation The main package dependencies are `MuJoCo`, `python=3.7`, `gym>=0.13`, `mujoco-py>=2.0`, and `pytorch>=1.0`. See `setup/README.md` ([link](https://github.com/aravindr93/mjrl/tree/master/setup#installation)) for detailed install instructions. # Bibliography If you find the package useful, please cite the following papers. ``` @INPROCEEDINGS{Rajeswaran-NIPS-17, AUTHOR = {Aravind Rajeswaran and Kendall Lowrey and Emanuel Todorov and Sham Kakade}, TITLE = "{Towards Generalization and Simplicity in Continuous Control}", BOOKTITLE = {NIPS}, YEAR = {2017}, } @INPROCEEDINGS{Rajeswaran-RSS-18, AUTHOR = {Aravind Rajeswaran AND Vikash Kumar AND Abhishek Gupta AND Giulia Vezzani AND John Schulman AND Emanuel Todorov AND Sergey Levine}, TITLE = "{Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations}", BOOKTITLE = {Proceedings of Robotics: Science and Systems (RSS)}, YEAR = {2018}, } ``` # Credits This package is maintained by [Aravind Rajeswaran](http://homes.cs.washington.edu/~aravraj/) and other members of the [Movement Control Lab,](http://homes.cs.washington.edu/~todorov/) University of Washington Seattle.