# optuna
**Repository Path**: nutquant/optuna
## Basic Information
- **Project Name**: optuna
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-12-14
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Optuna: A hyperparameter optimization framework
[](https://www.python.org)
[](https://pypi.python.org/pypi/optuna)
[](https://anaconda.org/conda-forge/optuna)
[](https://github.com/optuna/optuna)
[](https://circleci.com/gh/optuna/optuna)
[](https://optuna.readthedocs.io/en/stable/)
[](https://codecov.io/gh/optuna/optuna/branch/master)
[](https://gitter.im/optuna/optuna)
[**Website**](https://optuna.org/)
| [**Docs**](https://optuna.readthedocs.io/en/stable/)
| [**Install Guide**](https://optuna.readthedocs.io/en/stable/installation.html)
| [**Tutorial**](https://optuna.readthedocs.io/en/stable/tutorial/index.html)
*Optuna* is an automatic hyperparameter optimization software framework, particularly designed
for machine learning. It features an imperative, *define-by-run* style user API. Thanks to our
*define-by-run* API, the code written with Optuna enjoys high modularity, and the user of
Optuna can dynamically construct the search spaces for the hyperparameters.
## News
- **2020-09-17** `isort` has been incorporated to keep import statements consistent. Read more about it in [CONTRIBUTING.md](./CONTRIBUTING.md)
- **2020-08-07** We are welcoming [contributions](#contribution) and are working on streamlining the experience. Read more about it in the [blog](https://medium.com/optuna/optuna-wants-your-pull-request-ff619572302c)
## Key Features
Optuna has modern functionalities as follows:
- [Lightweight, versatile, and platform agnostic architecture](https://optuna.readthedocs.io/en/stable/tutorial/001_first.html)
- Handle a wide variety of tasks with a simple installation that has few requirements.
- [Pythonic search spaces](https://optuna.readthedocs.io/en/stable/tutorial/002_configurations.html)
- Define search spaces using familiar Python syntax including conditionals and loops.
- [Efficient optimization algorithms](https://optuna.readthedocs.io/en/stable/tutorial/007_pruning.html)
- Adopt state-of-the-art algorithms for sampling hyper parameters and efficiently pruning unpromising trials.
- [Easy parallelization](https://optuna.readthedocs.io/en/stable/tutorial/004_distributed.html)
- Scale studies to tens or hundreds or workers with little or no changes to the code.
- [Quick visualization](https://optuna.readthedocs.io/en/stable/reference/visualization/index.html)
- Inspect optimization histories from a variety of plotting functions.
## Basic Concepts
We use the terms *study* and *trial* as follows:
- Study: optimization based on an objective function
- Trial: a single execution of the objective function
Please refer to sample code below. The goal of a *study* is to find out the optimal set of
hyperparameter values (e.g., `classifier` and `svm_c`) through multiple *trials* (e.g.,
`n_trials=100`). Optuna is a framework designed for the automation and the acceleration of the
optimization *studies*.
[](http://colab.research.google.com/github/optuna/optuna/blob/master/examples/quickstart.ipynb)
```python
import ...
# Define an objective function to be minimized.
def objective(trial):
# Invoke suggest methods of a Trial object to generate hyperparameters.
regressor_name = trial.suggest_categorical('classifier', ['SVR', 'RandomForest'])
if regressor_name == 'SVR':
svr_c = trial.suggest_loguniform('svr_c', 1e-10, 1e10)
regressor_obj = sklearn.svm.SVR(C=svr_c)
else:
rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32)
regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth)
X, y = sklearn.datasets.load_boston(return_X_y=True)
X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y, random_state=0)
regressor_obj.fit(X_train, y_train)
y_pred = regressor_obj.predict(X_val)
error = sklearn.metrics.mean_squared_error(y_val, y_pred)
return error # An objective value linked with the Trial object.
study = optuna.create_study() # Create a new study.
study.optimize(objective, n_trials=100) # Invoke optimization of the objective function.
```
## Integrations
[Integrations modules](https://optuna.readthedocs.io/en/stable/tutorial/pruning.html), which allow pruning, or early stopping, of unpromising trials are available for the following libraries:
* [AllenNLP](./examples/allennlp)
* [Catalyst](./examples/catalyst_simple.py)
* [Catboost](./examples/catboost_simple.py)
* [Chainer](./examples/pruning/chainer_integration.py)
* [FastAI](./examples/fastai_simple.py)
* [Keras](./examples/pruning/keras_integration.py)
* [LightGBM](./examples/pruning/lightgbm_integration.py)
* [MXNet](./examples/pruning/mxnet_integration.py)
* [PyTorch](./examples/pytorch_simple.py)
* [PyTorch Ignite](./examples/pytorch_ignite_simple.py)
* [PyTorch Lightning](./examples/pytorch_lightning_simple.py)
* [TensorFlow](./examples/pruning/tensorflow_estimator_integration.py)
* [tf.keras](./examples/pruning/tfkeras_integration.py)
* [XGBoost](./examples/pruning/xgboost_integration.py)
## Installation
Optuna is available at [the Python Package Index](https://pypi.org/project/optuna/) and on [Anaconda Cloud](https://anaconda.org/conda-forge/optuna).
```bash
# PyPI
$ pip install optuna
```
```bash
# Anaconda Cloud
$ conda install -c conda-forge optuna
```
Optuna supports Python 3.6 or newer.
Also, we also provide Optuna docker images on [DockerHub](https://hub.docker.com/r/optuna/optuna).
## Communication
- [GitHub Issues] for bug reports, feature requests and questions.
- [Gitter] for interactive chat with developers.
- [Stack Overflow] for questions.
[GitHub issues]: https://github.com/optuna/optuna/issues
[Gitter]: https://gitter.im/optuna/optuna
[Stack Overflow]: https://stackoverflow.com/questions/tagged/optuna
## Contribution
Any contributions to Optuna are more than welcome!
If you are new to Optuna, please check the [good first issues](https://github.com/optuna/optuna/labels/good%20first%20issue). They are relatively simple, well-defined and are often good starting points for you to get familiar with the contribution workflow and other developers.
If you already have contributed to Optuna, we recommend the other [contribution-welcome issues](https://github.com/optuna/optuna/labels/contribution-welcome).
For general guidelines how to contribute to the project, take a look at [CONTRIBUTING.md](./CONTRIBUTING.md).
## Reference
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019.
Optuna: A Next-generation Hyperparameter Optimization Framework. In KDD ([arXiv](https://arxiv.org/abs/1907.10902)).