# MediCLIP **Repository Path**: ogw0725/MediCLIP ## Basic Information - **Project Name**: MediCLIP - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-08-12 - **Last Updated**: 2025-08-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MediCLIP **💡 This is the official implementation of the paper "MediCLIP: Adapting CLIP for Few-shot Medical Image Anomaly Detection"(MICCAI 2024) [[arxiv]](https://arxiv.org/abs/2405.11315)**. MediCLIP is an efficient few-shot medical image anomaly detection method, demonstrating SOTA anomaly detection performance with very few normal medical images. MediCLIP integrates learnable prompts, adapters, and realistic medical image anomaly synthesis tasks.
## 🔧 Installation To run experiments, first clone the repository and install `requirements.txt`. ``` $ git clone https://github.com/cnulab/MediCLIP.git $ cd MediCLIP $ pip install -r requirements.txt ``` ### Data preparation Download the following datasets: - **BUSI [[Baidu Cloud (pwd8866)]](https://pan.baidu.com/s/1EVt96fExiqrvMQslPDRRRg?pwd=8866) [[Google Drive]](https://drive.google.com/file/d/1PyvMXdNEVY86BY1PV8yKhPVS30TAmS6X/view?usp=drive_link) [[Official Link]](https://scholar.cu.edu.eg/?q=afahmy/pages/dataset)** - **BrainMRI [[Baidu Cloud (pwd8866)]](https://pan.baidu.com/s/1--5vPMN-eTqePPYjpKTwvA?pwd=8866) [[Google Drive]](https://drive.google.com/file/d/1kldE-5_wXaN-JR_8Y_mRCKQ6VZiyv3km/view?usp=drive_link) [[Official Link]](https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection)** - **CheXpert [[Baidu Cloud (pwd8866)]](https://pan.baidu.com/s/15-V5wobA_7ICvZAXBraDGA?pwd=8866) [[Google Drive]](https://drive.google.com/file/d/1pVYRipGC2VqjYP-wHdDFR-lLf7itLiUi/view?usp=drive_link) [[Official Link]](https://stanfordmlgroup.github.io/competitions/chexpert/)** Unzip them to the `data`. Please refer to [data/README](data/README.md). ## 🚀 Experiments To train the MediCLIP on the BrainMRI dataset with the support set size is 16: ``` $ python train.py --config_path config/brainmri.yaml --k_shot 16 ``` To test the MediCLIP on the BrainMRI dataset: ``` $ python test.py --config_path config/brainmri.yaml --checkpoint_path xxx.pkl ``` Replace ``xxx.pkl`` with your checkpoint path.
--- Code reference: **[[CLIP]](https://github.com/OpenAI/CLIP)** **[[CoOp]](https://github.com/KaiyangZhou/CoOp)** **[[Many-Tasks-Make-Light-Work]](https://github.com/matt-baugh/many-tasks-make-light-work)**. ## 🔗 Citation If this work is helpful to you, please cite it as: ``` @inproceedings{zhang2024mediclip, title={MediCLIP: Adapting CLIP for Few-shot Medical Image Anomaly Detection}, author={Ximiao Zhang, Min Xu, Dehui Qiu, Ruixin Yan, Ning Lang, and Xiuzhuang Zhou}, year={2024}, eprint={2405.11315}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```