可以通过谷歌学术 Follow 大佬的最新研究
排名不怎么分先后
Albert-László Barabási ---Google-Scholar-Citations
复杂网络领域开创性学者(总引190,000+)
Mark Newman --- Santa Fe Institute---Google-Scholar-Citations
复杂网络领域开创性学者(总引179,000+)
Duncan J Watts --- Pennsylvania---Google-Scholar-Citations
小世界模型, 六度(总引95,000+)
Jon Kleinberg---Google-Scholar-Citations
HITS 模型 (总引87,000+) 目前关注 HyperGraph
陈关荣教授--香港城市大学---Google-Scholar-Citations
混沌,非线性系统,复杂网络 (总引99,000+)
🌟 韩家炜 Jiawei Han --- UIUC---Google-Scholar-Citations
数据挖掘大佬(总引184,000+),最近关注于异质图网络和知识图谱等领域
🌟Philip S. Yu --- UIC ---Google-Scholar-Citations
数据挖掘大佬(总引118,000+),最近关注于异质图网络和知识图谱等领域
🌟 Christos Faloutsos --- CMU---Google-Scholar-Citations
Data Mining for graphs and streams 基础理论的大佬
唐杰 --- 清华大学---Google-Scholar-Citations
社会网络,知识图谱大佬, 超多顶会文章,还有 AMiner (The system has over 136 million researchers and 200 million papers) 等产品
Hanghang Tong --- UIUC---Google-Scholar-Citations
社会网络, 图挖掘; Christos Faloutsos 门生
James Fowler---Google-Scholar-Citations
高产学者,主要做社会网络方向,个人主页有很多源码,软件,和数据集。
M. De Domenico---Google-Scholar-Citations
多层网络研究知名学者,分享了他的研究进展、工具和数据集
Cristopher Moore - Santa Fe Institute---Google-Scholar-Citations
做很多物理学思想方法在复杂网络中的应用 ;以及一些量子计算,量子算法在网络中的应用
汪秉宏---中国科学技术大学---科学网博客-----Google-Scholar-Citations
物理倾向的的复杂网络大牛,写过好的复杂网络的专著。
🌟🌟 Jure Leskovec --- stanford---Google-Scholar-Citations
斯坦福复杂网络小组(总引62,000+),很多开创性工作(node2vec, GraphSAGE),个人主页有超多研究工具,数据集,代码 ; Christos Faloutsos 门生
周涛---电子科技大学---科学网博客---Google-Scholar-Citations
国内做复杂网络和数据挖掘的大佬(总引20,000+); 经常在科学网博客分享一些论文资料,研究方向介绍分析。
🌟 Thomas Kipf --- UVA ---Google-Scholar-Citations
GCN 一战成名,随后一系列图方面有影响力的工作, Max Welling 门生。
Xiangnan He --- USTC ---Google-Scholar-Citations
推荐系统 , 图神经网络; Tat-Seng Chua 门生。
🌟 Yizhou Sun --- UCLA---Google-Scholar-Citations
异质图方面研究, 韩家炜 门生。
Chuan Shi 石川--- 北邮---Google-Scholar-Citations
异质图方面研究, Philip S. Yu 门生。
Danai Koutra --- Umich---Google-Scholar-Citations
网络表征学习, 网络对齐 ; Christos Faloutsos 门生
Bryan Perozzi --- Stony Brook ---Google-Scholar-Citations
网络表征学习 ; DeepWalk 模型
Peng Cui 崔鹏--- 清华---Google-Scholar-Citations
社会动力学建模、大规模网络表征学习以及大数据驱动的因果推理和稳定预测; SDNE 模型
🌟 Jian Tang 唐建--- MILA---Google-Scholar-Citations
网络表征学习,知识图谱 ; LINE 模型
图信号处理基础特别扎实的大佬, 在 Barabasi 研究组工作过。
圣地,上面好多位大佬工作学习过的地方,网页有很多很好的研究成果,研究方向等等。
Centre for Chaos and Complex Networks---香港城市大学
复杂网络方向,已经很多工业应用; 主页有很多有关复杂网络的资源:大学课程+书籍+软件+数据集等等。
结合计算机和大数据,研究人类在各个系统中的行为,主页有project 数据集。
Jure Leskovec领导, 网络嵌入等有较多的相关研究;最新很多 GNN 的研究。
多层网络研究: 研究进展、工具和数据集。
Luciano Costa's research group
emphasize the analysis of several types of theoretical and real-world networks, including urban structures, Wikipedia, scientific citations, amongst others. Particular attention has been given to measurement and classification of complex networks, including the proposal of new measurements such as the accessibility and topological symmetry.
生物信息网络研究
University of Texas, 一些 graph 相关工作
MIT 环境工程系 González 领导的 HumNet 课题组
复杂网络角度对人类的时空行为 进行研究,在移动模式挖掘问题上有着长期的积累。
🌟 CS224W: Machine Learning with Graphs
斯坦福大学 Jure Leskovec 大佬小组的课程, 包含基本的图结构,图表征介绍,以及最新的 图神经网络,知识图谱的讲述。 主页有课程 PPT
上面介绍的 Barabási 巨佬实验室出的复杂网络相关课程, 免费!
Complexity- Explore(introduction to complexity
复杂网络,相关基础知识,数学理论等, 部分中文字幕
2016年的课程,有关 graph , 免费!
国内一个研究复杂网络的社区, 会实时推送有关复杂网络的研究新进展,也有一些课程,部分付费
周涛老师创办,有一些复杂网络相关课程,付费。
清华大学 nlp 实验室(刘知远大神小组)整理的有关 图神经网络(GNN) 的重要论文。
🌟 Literature of Deep Learning for Graphs
唐建老师小组收集 Deep Learning for Graphs, 可按主题和会议分别筛选
Graph-based deep learning literature
按照会议收集的图相关论文
Graph Adversarial Learning Literature
图结构数据的对抗攻击和防御论文收集
清华大学 CogDL: An Extensive Research Toolkit for Graphs。 : 快速实现网络任务 Baseline ,目前还不太完善
我自己的一个学习笔记
🌟 极验(geetest_jy) : 图神经网络每日资料分享
🌟 深度学习与图网络(AIGraph) : 图网络最近顶会动态
复杂网络(ComplexNetworks) : 不定期分享一些网络研究工具和书籍
开放知识图谱(OpenKG) : 几乎每天都有关于知识图谱的论文分享
人工智能前沿讲习(AIFrontier) : 较多研究论文解读分享
网络科学研究速递(netsci): Arxiv等来源的网络科学最新研究翻译推送(翻译纯是机翻,可以浏览)
🌟集智学园: 不定期的进行复杂网络相关论文解读,还不错
人工智能前沿讲习 : 有部分图神经网络研究分享
伯禹人工智能学院 : 上海交大研究生论文解读分享,短小精悍
Adv-soul : 图理论,图算法相关英文课程搬运
北京智源 : 人工智能前沿 : 刘知远,唐杰, 沈华伟等大佬都在。
用到的数据在这里
🌟🌟 Stanford Large Network Dataset Collection
斯坦福大学复杂网络小组收集整理
🌟🌟 KONECT
KONECT currently holds 261 networks,
🌟 Datasets Released for Reproducibility
comunelab 小组整理,主要为 社会网络和基因网络
陈关荣教授课题组整理的数据集,和相关工具软件放在一起
Pajek 平台收集的各种类型的数据,
NeuroMorpho.Org is the largest collection of publicly accessible 3D neuronal reconstructions and associated metadata.
Gephi 提供的样本数据集
图和社会网络的相关数据集
UC Irvine Network Data Repository
社会网络相关数据集
生物网络相关数据集(基因,蛋白质,药物,疾病)
创建一个基因调控网
较多二分图网络的数据集
🌟 Networkx
Python 语言开发的图论与复杂网络建模,支持创建简单无向图、有向图和多重图,内置许多标准图算法。
安装容易, 社区活跃, 100,000 节点下表现可接受
缺少可视化输出
高效,易于创建,操作,分析图的一个库, 支持 python, R, C 语言。 使用 C 语言的速度比使用 python 包分析速度快两个数量级。
支持 社区检测, 有内置的搜索机制去定位边和节点
支持较高质量的图片输出
iGraph 运行速度是 NetworkX 的 10-50倍。(10w 节点以上的网络,networkX 不太适合)
安装较为麻烦, 需要 C 编辑器。
整个库全部由 C / C++ 完成,加速运行
支持 并行计算,多个子任务同时运行
支持多种形式的图形输出
内置很多图 统计分析工具, 社区检测, blockmodeling 算法
安装和编译较为麻烦
支持并行计算
和 NetworkX 兼容, 在 NeworkX 建立网络, 可以直接移植到 Networkit
🌟 Gephi
GUI ,使用方便。 社区有很多插件,但是开发者好像不再更新 Gephi 了。
命令行工具,容易自动化,但是交互性较差
C 编译,有 python 库。 但是 Python 的 API 看起来有点乱(难受)。
前面提到的唐建大佬的工作(相关paper)。 处理超大规模的数据(百万量级),命令行工具,速度快,占用内存少。
GUI 好看,出图较炫。 但是按小时付费,功能不全,节点有限制。
Mac os 上 网络三维可视化工具, 目前是 beta 版,还有些功能没有实现
mac 和 linux 大型网络可视化, 完整中文教程,和相关的试验数据集
开源的可视化软件
http://www.ee.cityu.edu.hk/~gchen/ComplexNetworks/PersonalWebsites.html
https://towardsdatascience.com/large-graph-visualization-tools-and-approaches-2b8758a1cd59
社会网络研究学者: https://www.zhihu.com/question/26348052/answer/1020041417
复杂性科学、网络科学、计算社会科学研究机构推介: https://mp.weixin.qq.com/s/R-V4UevsNMKr5tsmWbQDMA
《Complex Network Analysis in Python》 Dmitry Zinoviev.
《链路预测》吕琳媛 周涛
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。