# Seminar-Materials **Repository Path**: oldshan/Seminar-Materials ## Basic Information - **Project Name**: Seminar-Materials - **Description**: 组会ppt与论文--每一次的精心准备都值得留下记录😛 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-06-23 - **Last Updated**: 2021-12-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 数据科学研讨会记录 ### 2018-3-16 | Title | Detail | Author | | ---------------------------------------- | ---------------------------------------- | --------- | | Why should I trust you | 提出了开源工具"Lime",能够解释样本的预测结果,并且增加模型本身的可解释性 | Fuyingnan | | Deep Residual Learning for Image Recognition | 提出了更深层次的卷积网络架构——残差网络,解决了传统模型中网络难以训练的问题 | Zhurenyu | | A Unified Probabilistic Framework for Name Disambiguation in Digital Library | 将姓名消歧问题formalize成一个隐马尔科夫随机场,并提出了参数估计的两阶段算法;提出了自动确定重名人数的auto K算法 | Lina | | JointExtractionofEntitiesandRelations | 将实体识别和关系提取统一为序列标注问题,使用同一个模型同时进行实体识别和关系提取 | Kuangjun | ### 2018-3-23 | Title | Detail | Author | | ---------------------------------------- | -------------------------- | ----------- | | Mask R-CNN | 提出了Mask R-CNN用于图像的实例分割 | yuruonan | | Deep Reinforcement Learning for Mention-Ranking | 采用神经网络和强化学习技术增加共指消解的准确率 | chenyuanzhe | | Question Answering with Subgraph Embeddings | 采用基于子图嵌入的方法,进行问答系统的训练和答案预测 | tanglumin | | RNN学习心得 | 介绍了RNN相关概念,讲解了梯度消失和权重冲突问题 | yangkang | ### 2018-3-30 | Title | Detail | Author | | ---------------------------------------- | ---------------------------------------- | ---------- | | Reinforcement Learning for Relation Classification from Noisy Data | 提出一个新的关系分类模型,由实体选择器和关系分类器构成,能够在“Sentence Level”提取关系。将实体选择问题转换成强化学习问题。 | GuHang | | Pix2code: Generating Code from a Graphical User Interface Screenshot | 使用CNN和RNN的联合模型,将网页的UI图转化为对应的HTML代码 | E Shen | | JAVA GC机制 | 讲解了java的内存分配机制和垃圾回收机制 | YinJiaLing | ### 2018-4-13 | Title | Detail | Author | | ---------------------------------------- | ---------------------------------------- | ---------- | | Convolutional Sequence to Sequence Learning | An architecture based entirely on convolutional neural networks for sequence to sequence learning(such as NMT) | CuiYiFeng | | DeepFM:A Factorization-Machine based Neural Network for CTR Predicti | 回顾了过去的CTR模型,以及介绍了一系列基于深度学习的CTR模型(FNN,PNN,WDL) | ChenLeiHui | | Aspect Level Sentiment Classification with Deep Memory Network | 介绍了Memory Network,用于情感分析问题 | Void-Yu |