# Face-Super-Resolution **Repository Path**: openbayes/Face-Super-Resolution ## Basic Information - **Project Name**: Face-Super-Resolution - **Description**: Face-Super-Resolution - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-09-30 - **Last Updated**: 2024-11-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Face-Super-Resolution Face super resolution based on ESRGAN (https://github.com/xinntao/BasicSR) ## Results INPUT & AFTER-SR & GROUND TRUTH ![result](results/result.png) ## Usage ### Train 1. Run python gen_lr_imgs.py to get the face imgs with low resolution and pool qualities 2. Set the dir in train.py > hr_path: The path list of imgs with high resolution. > lr_path: The path of imgs with low resolution. 3. Run python train.py ### Pretrained models 1. Dlib alignment shape_predictor_68_face_landmarks.dat (https://pan.baidu.com/s/19Y-AYnXs6ubIh4vlkyvqbQ) (https://drive.google.com/open?id=1u3h3nX5f_w-HJV8Nd1zwqc3uTnVja5Ol) 2. Generator weights 90000_G.pth (https://pan.baidu.com/s/14ITkNz_t0E7hRv0-tTAjhA) (https://drive.google.com/open?id=1CZkLZPtbJepgksCM93MvsY7NgqnEZSvk) > 90000_G.pth (The last activation in G is linear, clearer) 90000_D.pth (https://pan.baidu.com/s/1-gRy1xw5h95_ie0NfBbDlw password:6him) (https://drive.google.com/file/d/1zX9dbCu9lFu_SvRCvPIWnwJUUGUrZUhk/view?usp=sharing) > Maybe you need it to finetune the model? 200000_G.pth (https://pan.baidu.com/s/1Osge_4JjPyvG5Xfnbe9KVA) (https://drive.google.com/open?id=1B6BQu5Qk8eIu8MGTWJHnJxaxY1zCqQEt) > 200000_G.pth (The last activation in G is tanh) ### Test 1. Download 'shape_predictor_68_face_landmarks.dat' and '90000_G.pth' 2. Set 'pretrain_model_G' in test.py 3. RUN python test.py ![conduct](results/AI日读.jpg)