# fairgen
**Repository Path**: openbayes/fairgen
## Basic Information
- **Project Name**: fairgen
- **Description**: fairgenfairgenfairgen
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-12-11
- **Last Updated**: 2024-11-10
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# FairGen - Improving the Fairness of Deep Generative Models without Retraining

**Figure:** *Framework of FairGen*.
> **Improving the Fairness of Deep Generative Models without Retraining**
> Shuhan Tan, Yujun Shen, Bolei Zhou
> *arXiv preprint arXiv:2012.04842*
[[Paper](https://arxiv.org/pdf/2012.04842.pdf)]
[[Project Page](https://genforce.github.io/fairgen/)]
[[Colab](https://colab.research.google.com/github/genforce/fairgen/blob/main/docs/fairgen.ipynb)]
In this repository, we propose a simple yet effective method to improve the *fairness* of image generation for a pre-trained GAN model *without retraining*.
We utilize the recent work of *GAN interpretation* and a *Gaussian Mixture Model (GMM)* to support the sampling of latent codes for producing images with a more fair attribute distribution.
We call this method *FairGen*.
Experiments show that *FairGen* can substantially improve the fairness of image generation. The images generated from our method are further applied to reveal and quantify the biases in commercial face classifiers and face super-resolution model. Some results are shown as follows.
## Fair Image Generation
Attributes: Age-Eyeglasses

Attributes: Gender-Black Hair

## Identifying Bias in Existing Models
Mis-classification in Commercial Gender Classifiers

Attribute Alternation by a Face Super-resolution Model

## BibTeX
```bibtex
@article{tan2020fairgen,
title = {Improving the Fairness of Deep Generative Models without Retraining},
author = {Tan, Shuhan and Shen, Yujun and Zhou, Bolei},
journal = {arXiv preprint arXiv:2012.04842},
year = {2020}
}
```
## Code Coming Soon