# fairgen **Repository Path**: openbayes/fairgen ## Basic Information - **Project Name**: fairgen - **Description**: fairgenfairgenfairgen - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-11 - **Last Updated**: 2024-11-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # FairGen - Improving the Fairness of Deep Generative Models without Retraining ![image](./docs/assets/framework.jpg) **Figure:** *Framework of FairGen*. > **Improving the Fairness of Deep Generative Models without Retraining**
> Shuhan Tan, Yujun Shen, Bolei Zhou
> *arXiv preprint arXiv:2012.04842* [[Paper](https://arxiv.org/pdf/2012.04842.pdf)] [[Project Page](https://genforce.github.io/fairgen/)] [[Colab](https://colab.research.google.com/github/genforce/fairgen/blob/main/docs/fairgen.ipynb)] In this repository, we propose a simple yet effective method to improve the *fairness* of image generation for a pre-trained GAN model *without retraining*. We utilize the recent work of *GAN interpretation* and a *Gaussian Mixture Model (GMM)* to support the sampling of latent codes for producing images with a more fair attribute distribution. We call this method *FairGen*. Experiments show that *FairGen* can substantially improve the fairness of image generation. The images generated from our method are further applied to reveal and quantify the biases in commercial face classifiers and face super-resolution model. Some results are shown as follows. ## Fair Image Generation Attributes: Age-Eyeglasses ![image](./docs/assets/age_eyeglasses.jpg) Attributes: Gender-Black Hair ![image](./docs/assets/gender_black_hair.jpg) ## Identifying Bias in Existing Models Mis-classification in Commercial Gender Classifiers ![image](./docs/assets/api.jpg) Attribute Alternation by a Face Super-resolution Model ![image](./docs/assets/PULSE.jpg) ## BibTeX ```bibtex @article{tan2020fairgen, title = {Improving the Fairness of Deep Generative Models without Retraining}, author = {Tan, Shuhan and Shen, Yujun and Zhou, Bolei}, journal = {arXiv preprint arXiv:2012.04842}, year = {2020} } ``` ## Code Coming Soon