diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index e1f8e36328804725770e0ced246da71735a04320..74e9109b4c18c5236e1f9201fce6484f9b1485fd 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -566,6 +566,20 @@ const char *kernel_type_name(u32 id) btf_type_by_id(btf_vmlinux, id)->name_off); } +/* The reg state of a pointer or a bounded scalar was saved when + * it was spilled to the stack. + */ +static bool is_spilled_reg(const struct bpf_stack_state *stack) +{ + return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; +} + +static void scrub_spilled_slot(u8 *stype) +{ + if (*stype != STACK_INVALID) + *stype = STACK_MISC; +} + static void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_func_state *state) { @@ -668,7 +682,7 @@ static void print_verifier_state(struct bpf_verifier_env *env, continue; verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); print_liveness(env, state->stack[i].spilled_ptr.live); - if (state->stack[i].slot_type[0] == STACK_SPILL) { + if (is_spilled_reg(&state->stack[i])) { reg = &state->stack[i].spilled_ptr; t = reg->type; verbose(env, "=%s", reg_type_str(env, t)); @@ -1876,7 +1890,12 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, if (class == BPF_ALU || class == BPF_ALU64) { if (!(*reg_mask & dreg)) return 0; - if (opcode == BPF_MOV) { + if (opcode == BPF_END || opcode == BPF_NEG) { + /* sreg is reserved and unused + * dreg still need precision before this insn + */ + return 0; + } else if (opcode == BPF_MOV) { if (BPF_SRC(insn->code) == BPF_X) { /* dreg = sreg * dreg needs precision after this insn @@ -1917,8 +1936,6 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, */ if (insn->src_reg != BPF_REG_FP) return 0; - if (BPF_SIZE(insn->code) != BPF_DW) - return 0; /* dreg = *(u64 *)[fp - off] was a fill from the stack. * that [fp - off] slot contains scalar that needs to be @@ -1941,8 +1958,6 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, /* scalars can only be spilled into stack */ if (insn->dst_reg != BPF_REG_FP) return 0; - if (BPF_SIZE(insn->code) != BPF_DW) - return 0; spi = (-insn->off - 1) / BPF_REG_SIZE; if (spi >= 64) { verbose(env, "BUG spi %d\n", spi); @@ -2062,8 +2077,11 @@ static void mark_all_scalars_precise(struct bpf_verifier_env *env, /* big hammer: mark all scalars precise in this path. * pop_stack may still get !precise scalars. + * We also skip current state and go straight to first parent state, + * because precision markings in current non-checkpointed state are + * not needed. See why in the comment in __mark_chain_precision below. */ - for (; st; st = st->parent) + for (st = st->parent; st; st = st->parent) { for (i = 0; i <= st->curframe; i++) { func = st->frame[i]; for (j = 0; j < BPF_REG_FP; j++) { @@ -2073,7 +2091,7 @@ static void mark_all_scalars_precise(struct bpf_verifier_env *env, reg->precise = true; } for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { - if (func->stack[j].slot_type[0] != STACK_SPILL) + if (!is_spilled_reg(&func->stack[j])) continue; reg = &func->stack[j].spilled_ptr; if (reg->type != SCALAR_VALUE) @@ -2081,9 +2099,89 @@ static void mark_all_scalars_precise(struct bpf_verifier_env *env, reg->precise = true; } } + } } -static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, +/* + * __mark_chain_precision() backtracks BPF program instruction sequence and + * chain of verifier states making sure that register *regno* (if regno >= 0) + * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked + * SCALARS, as well as any other registers and slots that contribute to + * a tracked state of given registers/stack slots, depending on specific BPF + * assembly instructions (see backtrack_insns() for exact instruction handling + * logic). This backtracking relies on recorded jmp_history and is able to + * traverse entire chain of parent states. This process ends only when all the + * necessary registers/slots and their transitive dependencies are marked as + * precise. + * + * One important and subtle aspect is that precise marks *do not matter* in + * the currently verified state (current state). It is important to understand + * why this is the case. + * + * First, note that current state is the state that is not yet "checkpointed", + * i.e., it is not yet put into env->explored_states, and it has no children + * states as well. It's ephemeral, and can end up either a) being discarded if + * compatible explored state is found at some point or BPF_EXIT instruction is + * reached or b) checkpointed and put into env->explored_states, branching out + * into one or more children states. + * + * In the former case, precise markings in current state are completely + * ignored by state comparison code (see regsafe() for details). Only + * checkpointed ("old") state precise markings are important, and if old + * state's register/slot is precise, regsafe() assumes current state's + * register/slot as precise and checks value ranges exactly and precisely. If + * states turn out to be compatible, current state's necessary precise + * markings and any required parent states' precise markings are enforced + * after the fact with propagate_precision() logic, after the fact. But it's + * important to realize that in this case, even after marking current state + * registers/slots as precise, we immediately discard current state. So what + * actually matters is any of the precise markings propagated into current + * state's parent states, which are always checkpointed (due to b) case above). + * As such, for scenario a) it doesn't matter if current state has precise + * markings set or not. + * + * Now, for the scenario b), checkpointing and forking into child(ren) + * state(s). Note that before current state gets to checkpointing step, any + * processed instruction always assumes precise SCALAR register/slot + * knowledge: if precise value or range is useful to prune jump branch, BPF + * verifier takes this opportunity enthusiastically. Similarly, when + * register's value is used to calculate offset or memory address, exact + * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to + * what we mentioned above about state comparison ignoring precise markings + * during state comparison, BPF verifier ignores and also assumes precise + * markings *at will* during instruction verification process. But as verifier + * assumes precision, it also propagates any precision dependencies across + * parent states, which are not yet finalized, so can be further restricted + * based on new knowledge gained from restrictions enforced by their children + * states. This is so that once those parent states are finalized, i.e., when + * they have no more active children state, state comparison logic in + * is_state_visited() would enforce strict and precise SCALAR ranges, if + * required for correctness. + * + * To build a bit more intuition, note also that once a state is checkpointed, + * the path we took to get to that state is not important. This is crucial + * property for state pruning. When state is checkpointed and finalized at + * some instruction index, it can be correctly and safely used to "short + * circuit" any *compatible* state that reaches exactly the same instruction + * index. I.e., if we jumped to that instruction from a completely different + * code path than original finalized state was derived from, it doesn't + * matter, current state can be discarded because from that instruction + * forward having a compatible state will ensure we will safely reach the + * exit. States describe preconditions for further exploration, but completely + * forget the history of how we got here. + * + * This also means that even if we needed precise SCALAR range to get to + * finalized state, but from that point forward *that same* SCALAR register is + * never used in a precise context (i.e., it's precise value is not needed for + * correctness), it's correct and safe to mark such register as "imprecise" + * (i.e., precise marking set to false). This is what we rely on when we do + * not set precise marking in current state. If no child state requires + * precision for any given SCALAR register, it's safe to dictate that it can + * be imprecise. If any child state does require this register to be precise, + * we'll mark it precise later retroactively during precise markings + * propagation from child state to parent states. + */ +static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno, int spi) { struct bpf_verifier_state *st = env->cur_state; @@ -2100,22 +2198,22 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, if (!env->bpf_capable) return 0; - func = st->frame[st->curframe]; + /* Do sanity checks against current state of register and/or stack + * slot, but don't set precise flag in current state, as precision + * tracking in the current state is unnecessary. + */ + func = st->frame[frame]; if (regno >= 0) { reg = &func->regs[regno]; if (reg->type != SCALAR_VALUE) { WARN_ONCE(1, "backtracing misuse"); return -EFAULT; } - if (!reg->precise) - new_marks = true; - else - reg_mask = 0; - reg->precise = true; + new_marks = true; } while (spi >= 0) { - if (func->stack[spi].slot_type[0] != STACK_SPILL) { + if (!is_spilled_reg(&func->stack[spi])) { stack_mask = 0; break; } @@ -2124,11 +2222,7 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, stack_mask = 0; break; } - if (!reg->precise) - new_marks = true; - else - stack_mask = 0; - reg->precise = true; + new_marks = true; break; } @@ -2181,7 +2275,7 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, break; new_marks = false; - func = st->frame[st->curframe]; + func = st->frame[frame]; bitmap_from_u64(mask, reg_mask); for_each_set_bit(i, mask, 32) { reg = &func->regs[i]; @@ -2214,7 +2308,7 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, return 0; } - if (func->stack[i].slot_type[0] != STACK_SPILL) { + if (!is_spilled_reg(&func->stack[i])) { stack_mask &= ~(1ull << i); continue; } @@ -2247,12 +2341,17 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, static int mark_chain_precision(struct bpf_verifier_env *env, int regno) { - return __mark_chain_precision(env, regno, -1); + return __mark_chain_precision(env, env->cur_state->curframe, regno, -1); +} + +static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno) +{ + return __mark_chain_precision(env, frame, regno, -1); } -static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) +static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi) { - return __mark_chain_precision(env, -1, spi); + return __mark_chain_precision(env, frame, -1, spi); } static bool is_spillable_regtype(enum bpf_reg_type type) @@ -2314,16 +2413,38 @@ static bool __is_pointer_value(bool allow_ptr_leaks, return reg->type != SCALAR_VALUE; } +/* Copy src state preserving dst->parent and dst->live fields */ +static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) +{ + struct bpf_reg_state *parent = dst->parent; + enum bpf_reg_liveness live = dst->live; + + *dst = *src; + dst->parent = parent; + dst->live = live; +} + static void save_register_state(struct bpf_func_state *state, - int spi, struct bpf_reg_state *reg) + int spi, struct bpf_reg_state *reg, + int size) { int i; - state->stack[spi].spilled_ptr = *reg; - state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; + copy_register_state(&state->stack[spi].spilled_ptr, reg); + if (size == BPF_REG_SIZE) + state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; + + for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) + state->stack[spi].slot_type[i - 1] = STACK_SPILL; - for (i = 0; i < BPF_REG_SIZE; i++) - state->stack[spi].slot_type[i] = STACK_SPILL; + /* size < 8 bytes spill */ + for (; i; i--) + scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); +} + +static bool is_bpf_st_mem(struct bpf_insn *insn) +{ + return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; } /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, @@ -2337,14 +2458,15 @@ static int check_stack_write_fixed_off(struct bpf_verifier_env *env, { struct bpf_func_state *cur; /* state of the current function */ int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; - u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; + struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; struct bpf_reg_state *reg = NULL; + u32 dst_reg = insn->dst_reg; /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, * so it's aligned access and [off, off + size) are within stack limits */ if (!env->allow_ptr_leaks && - state->stack[spi].slot_type[0] == STACK_SPILL && + is_spilled_reg(&state->stack[spi]) && size != BPF_REG_SIZE) { verbose(env, "attempt to corrupt spilled pointer on stack\n"); return -EACCES; @@ -2367,7 +2489,7 @@ static int check_stack_write_fixed_off(struct bpf_verifier_env *env, env->insn_aux_data[insn_idx].sanitize_stack_spill = true; } - if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && + if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && !register_is_null(reg) && env->bpf_capable) { if (dst_reg != BPF_REG_FP) { /* The backtracking logic can only recognize explicit @@ -2380,7 +2502,17 @@ static int check_stack_write_fixed_off(struct bpf_verifier_env *env, if (err) return err; } - save_register_state(state, spi, reg); + save_register_state(state, spi, reg, size); + /* Break the relation on a narrowing spill. */ + if (fls64(reg->umax_value) > BITS_PER_BYTE * size) + state->stack[spi].spilled_ptr.id = 0; + } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && + insn->imm != 0 && env->bpf_capable) { + struct bpf_reg_state fake_reg = {}; + + __mark_reg_known(&fake_reg, insn->imm); + fake_reg.type = SCALAR_VALUE; + save_register_state(state, spi, &fake_reg, size); } else if (reg && is_spillable_regtype(reg->type)) { /* register containing pointer is being spilled into stack */ if (size != BPF_REG_SIZE) { @@ -2392,16 +2524,16 @@ static int check_stack_write_fixed_off(struct bpf_verifier_env *env, verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); return -EINVAL; } - save_register_state(state, spi, reg); + save_register_state(state, spi, reg, size); } else { u8 type = STACK_MISC; /* regular write of data into stack destroys any spilled ptr */ state->stack[spi].spilled_ptr.type = NOT_INIT; /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ - if (state->stack[spi].slot_type[0] == STACK_SPILL) + if (is_spilled_reg(&state->stack[spi])) for (i = 0; i < BPF_REG_SIZE; i++) - state->stack[spi].slot_type[i] = STACK_MISC; + scrub_spilled_slot(&state->stack[spi].slot_type[i]); /* only mark the slot as written if all 8 bytes were written * otherwise read propagation may incorrectly stop too soon @@ -2415,7 +2547,8 @@ static int check_stack_write_fixed_off(struct bpf_verifier_env *env, state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; /* when we zero initialize stack slots mark them as such */ - if (reg && register_is_null(reg)) { + if ((reg && register_is_null(reg)) || + (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { /* backtracking doesn't work for STACK_ZERO yet. */ err = mark_chain_precision(env, value_regno); if (err) @@ -2599,35 +2732,56 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env, struct bpf_func_state *state = vstate->frame[vstate->curframe]; int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; struct bpf_reg_state *reg; - u8 *stype; + u8 *stype, type; stype = reg_state->stack[spi].slot_type; reg = ®_state->stack[spi].spilled_ptr; - if (stype[0] == STACK_SPILL) { - if (size != BPF_REG_SIZE) { + if (is_spilled_reg(®_state->stack[spi])) { + u8 spill_size = 1; + + for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) + spill_size++; + + if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { if (reg->type != SCALAR_VALUE) { verbose_linfo(env, env->insn_idx, "; "); verbose(env, "invalid size of register fill\n"); return -EACCES; } - if (dst_regno >= 0) { + + mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); + if (dst_regno < 0) + return 0; + + if (!(off % BPF_REG_SIZE) && size == spill_size) { + /* The earlier check_reg_arg() has decided the + * subreg_def for this insn. Save it first. + */ + s32 subreg_def = state->regs[dst_regno].subreg_def; + + copy_register_state(&state->regs[dst_regno], reg); + state->regs[dst_regno].subreg_def = subreg_def; + } else { + for (i = 0; i < size; i++) { + type = stype[(slot - i) % BPF_REG_SIZE]; + if (type == STACK_SPILL) + continue; + if (type == STACK_MISC) + continue; + verbose(env, "invalid read from stack off %d+%d size %d\n", + off, i, size); + return -EACCES; + } mark_reg_unknown(env, state->regs, dst_regno); - state->regs[dst_regno].live |= REG_LIVE_WRITTEN; } - mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); + state->regs[dst_regno].live |= REG_LIVE_WRITTEN; return 0; } - for (i = 1; i < BPF_REG_SIZE; i++) { - if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { - verbose(env, "corrupted spill memory\n"); - return -EACCES; - } - } if (dst_regno >= 0) { /* restore register state from stack */ - state->regs[dst_regno] = *reg; + copy_register_state(&state->regs[dst_regno], reg); /* mark reg as written since spilled pointer state likely * has its liveness marks cleared by is_state_visited() * which resets stack/reg liveness for state transitions @@ -2646,8 +2800,6 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env, } mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); } else { - u8 type; - for (i = 0; i < size; i++) { type = stype[(slot - i) % BPF_REG_SIZE]; if (type == STACK_MISC) @@ -4160,17 +4312,17 @@ static int check_stack_range_initialized( goto mark; } - if (state->stack[spi].slot_type[0] == STACK_SPILL && + if (is_spilled_reg(&state->stack[spi]) && state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) goto mark; - if (state->stack[spi].slot_type[0] == STACK_SPILL && + if (is_spilled_reg(&state->stack[spi]) && (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || env->allow_ptr_leaks)) { if (clobber) { __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); for (j = 0; j < BPF_REG_SIZE; j++) - state->stack[spi].slot_type[j] = STACK_MISC; + scrub_spilled_slot(&state->stack[spi].slot_type[j]); } goto mark; } @@ -5966,7 +6118,7 @@ static int sanitize_ptr_alu(struct bpf_verifier_env *env, */ if (!ptr_is_dst_reg) { tmp = *dst_reg; - *dst_reg = *ptr_reg; + copy_register_state(dst_reg, ptr_reg); } ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, env->insn_idx); @@ -7221,7 +7373,7 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) * to propagate min/max range. */ src_reg->id = ++env->id_gen; - *dst_reg = *src_reg; + copy_register_state(dst_reg, src_reg); dst_reg->live |= REG_LIVE_WRITTEN; dst_reg->subreg_def = DEF_NOT_SUBREG; } else { @@ -7232,7 +7384,7 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) insn->src_reg); return -EACCES; } else if (src_reg->type == SCALAR_VALUE) { - *dst_reg = *src_reg; + copy_register_state(dst_reg, src_reg); /* Make sure ID is cleared otherwise * dst_reg min/max could be incorrectly * propagated into src_reg by find_equal_scalars() @@ -8034,7 +8186,7 @@ static void find_equal_scalars(struct bpf_verifier_state *vstate, if (!reg) continue; if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) - *reg = *known_reg; + copy_register_state(reg, known_reg); } } } @@ -9271,7 +9423,7 @@ static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, if (env->explore_alu_limits) return false; if (rcur->type == SCALAR_VALUE) { - if (!rold->precise && !rcur->precise) + if (!rold->precise) return true; /* new val must satisfy old val knowledge */ return range_within(rold, rcur) && @@ -9404,9 +9556,9 @@ static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, * return false to continue verification of this path */ return false; - if (i % BPF_REG_SIZE) + if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) continue; - if (old->stack[spi].slot_type[0] != STACK_SPILL) + if (!is_spilled_reg(&old->stack[spi])) continue; if (!regsafe(env, &old->stack[spi].spilled_ptr, &cur->stack[spi].spilled_ptr, idmap)) @@ -9597,34 +9749,36 @@ static int propagate_precision(struct bpf_verifier_env *env, { struct bpf_reg_state *state_reg; struct bpf_func_state *state; - int i, err = 0; + int i, err = 0, fr; - state = old->frame[old->curframe]; - state_reg = state->regs; - for (i = 0; i < BPF_REG_FP; i++, state_reg++) { - if (state_reg->type != SCALAR_VALUE || - !state_reg->precise) - continue; - if (env->log.level & BPF_LOG_LEVEL2) - verbose(env, "propagating r%d\n", i); - err = mark_chain_precision(env, i); - if (err < 0) - return err; - } + for (fr = old->curframe; fr >= 0; fr--) { + state = old->frame[fr]; + state_reg = state->regs; + for (i = 0; i < BPF_REG_FP; i++, state_reg++) { + if (state_reg->type != SCALAR_VALUE || + !state_reg->precise) + continue; + if (env->log.level & BPF_LOG_LEVEL2) + verbose(env, "frame %d: propagating r%d\n", fr, i); + err = mark_chain_precision_frame(env, fr, i); + if (err < 0) + return err; + } - for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { - if (state->stack[i].slot_type[0] != STACK_SPILL) - continue; - state_reg = &state->stack[i].spilled_ptr; - if (state_reg->type != SCALAR_VALUE || - !state_reg->precise) - continue; - if (env->log.level & BPF_LOG_LEVEL2) - verbose(env, "propagating fp%d\n", - (-i - 1) * BPF_REG_SIZE); - err = mark_chain_precision_stack(env, i); - if (err < 0) - return err; + for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { + if (!is_spilled_reg(&state->stack[i])) + continue; + state_reg = &state->stack[i].spilled_ptr; + if (state_reg->type != SCALAR_VALUE || + !state_reg->precise) + continue; + if (env->log.level & BPF_LOG_LEVEL2) + verbose(env, "frame %d: propagating fp%d\n", + fr, (-i - 1) * BPF_REG_SIZE); + err = mark_chain_precision_stack_frame(env, fr, i); + if (err < 0) + return err; + } } return 0; } diff --git a/tools/testing/selftests/bpf/verifier/bounds_mix_sign_unsign.c b/tools/testing/selftests/bpf/verifier/bounds_mix_sign_unsign.c index c2aa6f26738b4181d8e944916a04d09cb0def051..bf82b923c5fe572c432d07cee27c5f759e74cbfa 100644 --- a/tools/testing/selftests/bpf/verifier/bounds_mix_sign_unsign.c +++ b/tools/testing/selftests/bpf/verifier/bounds_mix_sign_unsign.c @@ -1,13 +1,14 @@ { "bounds checks mixing signed and unsigned, positive bounds", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, 2), BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 3), @@ -17,20 +18,21 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 3), @@ -40,20 +42,21 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 2", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 5), @@ -65,20 +68,21 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 3", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 4), @@ -89,20 +93,21 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 4", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, 1), BPF_ALU64_REG(BPF_AND, BPF_REG_1, BPF_REG_2), @@ -112,19 +117,20 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .result = ACCEPT, }, { "bounds checks mixing signed and unsigned, variant 5", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 5), @@ -135,17 +141,20 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 6", .insns = { + BPF_MOV64_REG(BPF_REG_9, BPF_REG_1), + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), + BPF_MOV64_REG(BPF_REG_1, BPF_REG_9), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, -512), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_6, -1), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_6, 5), @@ -163,13 +172,14 @@ { "bounds checks mixing signed and unsigned, variant 7", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, 1024 * 1024 * 1024), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 3), @@ -179,19 +189,20 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .result = ACCEPT, }, { "bounds checks mixing signed and unsigned, variant 8", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2), @@ -203,20 +214,21 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 9", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_LD_IMM64(BPF_REG_2, -9223372036854775808ULL), BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2), @@ -228,19 +240,20 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .result = ACCEPT, }, { "bounds checks mixing signed and unsigned, variant 10", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2), @@ -252,20 +265,21 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 11", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2), @@ -278,20 +292,21 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 12", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -6), BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2), @@ -303,20 +318,21 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 13", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, 2), BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2), @@ -331,7 +347,7 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .errstr = "unbounded min value", .result = REJECT, }, @@ -340,13 +356,14 @@ .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_9, BPF_REG_1, offsetof(struct __sk_buff, mark)), + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_MOV64_IMM(BPF_REG_8, 2), @@ -360,20 +377,21 @@ BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, -3), BPF_JMP_IMM(BPF_JA, 0, 0, -7), }, - .fixup_map_hash_8b = { 4 }, + .fixup_map_hash_8b = { 6 }, .errstr = "unbounded min value", .result = REJECT, }, { "bounds checks mixing signed and unsigned, variant 15", .insns = { + BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns), + BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), - BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), - BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_MOV64_IMM(BPF_REG_2, -6), BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2), @@ -387,7 +405,7 @@ BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, - .fixup_map_hash_8b = { 3 }, + .fixup_map_hash_8b = { 5 }, .errstr = "unbounded min value", .result = REJECT, },