diff --git a/BUILD.gn b/BUILD.gn index 6e9ef99a574f979a43c5c721054cab73262c0179..52cbe5f6e9c163edeceb003c39154e0751d7104e 100644 --- a/BUILD.gn +++ b/BUILD.gn @@ -1,4 +1,15 @@ -# Copyright (C) Huawei Technologies Co., Ltd. 2020-2020. All rights reserved. +# Copyright (c) 2020-2022 Huawei Device Co., Ltd. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. import("//build/ohos.gni") diff --git a/crypto/bn/bn_sqrt.c b/crypto/bn/bn_sqrt.c index 1723d5ded5a87a0d0b665df15678b6013bcce2f7..53b0f559855c10fe5a97ea90f137afe7671ee08f 100644 --- a/crypto/bn/bn_sqrt.c +++ b/crypto/bn/bn_sqrt.c @@ -14,7 +14,8 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) /* * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number - * Theory", algorithm 1.5.1). 'p' must be prime! + * Theory", algorithm 1.5.1). 'p' must be prime, otherwise an error or + * an incorrect "result" will be returned. */ { BIGNUM *ret = in; @@ -301,18 +302,23 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) goto vrfy; } - /* find smallest i such that b^(2^i) = 1 */ - i = 1; - if (!BN_mod_sqr(t, b, p, ctx)) - goto end; - while (!BN_is_one(t)) { - i++; - if (i == e) { - BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); - goto end; + /* Find the smallest i, 0 < i < e, such that b^(2^i) = 1. */ + for (i = 1; i < e; i++) { + if (i == 1) { + if (!BN_mod_sqr(t, b, p, ctx)) + goto end; + + } else { + if (!BN_mod_mul(t, t, t, p, ctx)) + goto end; } - if (!BN_mod_mul(t, t, t, p, ctx)) - goto end; + if (BN_is_one(t)) + break; + } + /* If not found, a is not a square or p is not prime. */ + if (i >= e) { + BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); + goto end; } /* t := y^2^(e - i - 1) */