From 763ca8bfaadce242267fdbe752fffd4f20372a23 Mon Sep 17 00:00:00 2001 From: dym822 <12929385+dym822@user.noreply.gitee.com> Date: Tue, 10 Dec 2024 11:26:43 +0000 Subject: [PATCH] add lab-isic/demo0103/test0103.py. --- lab-isic/demo0103/test0103.py | 196 ++++++++++++++++++++++++++++++++++ 1 file changed, 196 insertions(+) create mode 100644 lab-isic/demo0103/test0103.py diff --git a/lab-isic/demo0103/test0103.py b/lab-isic/demo0103/test0103.py new file mode 100644 index 00000000..9d2e1b2a --- /dev/null +++ b/lab-isic/demo0103/test0103.py @@ -0,0 +1,196 @@ +# Copyright 2022 Google LLC +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import torch +import numpy as np + + +class ScoreParams: + + def __init__(self, gap, match, mismatch): + self.gap = gap + self.match = match + self.mismatch = mismatch + + def mis_match_char(self, x, y): + if x != y: + return self.mismatch + else: + return self.match + + +def get_matrix(size_x, size_y, gap): + matrix = [] + for i in range(len(size_x) + 1): + sub_matrix = [] + for j in range(len(size_y) + 1): + sub_matrix.append(0) + matrix.append(sub_matrix) + for j in range(1, len(size_y) + 1): + matrix[0][j] = j*gap + for i in range(1, len(size_x) + 1): + matrix[i][0] = i*gap + return matrix + + +def get_matrix(size_x, size_y, gap): + matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32) + matrix[0, 1:] = (np.arange(size_y) + 1) * gap + matrix[1:, 0] = (np.arange(size_x) + 1) * gap + return matrix + + +def get_traceback_matrix(size_x, size_y): + matrix = np.zeros((size_x + 1, size_y +1), dtype=np.int32) + matrix[0, 1:] = 1 + matrix[1:, 0] = 2 + matrix[0, 0] = 4 + return matrix + + +def global_align(x, y, score): + matrix = get_matrix(len(x), len(y), score.gap) + trace_back = get_traceback_matrix(len(x), len(y)) + for i in range(1, len(x) + 1): + for j in range(1, len(y) + 1): + left = matrix[i, j - 1] + score.gap + up = matrix[i - 1, j] + score.gap + diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1]) + matrix[i, j] = max(left, up, diag) + if matrix[i, j] == left: + trace_back[i, j] = 1 + elif matrix[i, j] == up: + trace_back[i, j] = 2 + else: + trace_back[i, j] = 3 + return matrix, trace_back + + +def get_aligned_sequences(x, y, trace_back): + x_seq = [] + y_seq = [] + i = len(x) + j = len(y) + mapper_y_to_x = [] + while i > 0 or j > 0: + if trace_back[i, j] == 3: + x_seq.append(x[i-1]) + y_seq.append(y[j-1]) + i = i-1 + j = j-1 + mapper_y_to_x.append((j, i)) + elif trace_back[i][j] == 1: + x_seq.append('-') + y_seq.append(y[j-1]) + j = j-1 + mapper_y_to_x.append((j, -1)) + elif trace_back[i][j] == 2: + x_seq.append(x[i-1]) + y_seq.append('-') + i = i-1 + elif trace_back[i][j] == 4: + break + mapper_y_to_x.reverse() + return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64) + + +def get_mapper(x: str, y: str, tokenizer, max_len=77): + x_seq = tokenizer.encode(x) + y_seq = tokenizer.encode(y) + score = ScoreParams(0, 1, -1) + matrix, trace_back = global_align(x_seq, y_seq, score) + mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1] + alphas = torch.ones(max_len) + alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float() + mapper = torch.zeros(max_len, dtype=torch.int64) + mapper[:mapper_base.shape[0]] = mapper_base[:, 1] + mapper[mapper_base.shape[0]:] = len(y_seq) + torch.arange(max_len - len(y_seq)) + return mapper, alphas + + +def get_refinement_mapper(prompts, tokenizer, max_len=77): + x_seq = prompts[0] + mappers, alphas = [], [] + for i in range(1, len(prompts)): + mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len) + mappers.append(mapper) + alphas.append(alpha) + return torch.stack(mappers), torch.stack(alphas) + + +def get_word_inds(text: str, word_place: int, tokenizer): + split_text = text.split(" ") + if type(word_place) is str: + word_place = [i for i, word in enumerate(split_text) if word_place == word] + elif type(word_place) is int: + word_place = [word_place] + out = [] + if len(word_place) > 0: + words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1] + cur_len, ptr = 0, 0 + + for i in range(len(words_encode)): + cur_len += len(words_encode[i]) + if ptr in word_place: + out.append(i + 1) + if cur_len >= len(split_text[ptr]): + ptr += 1 + cur_len = 0 + return np.array(out) + + +def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77): + words_x = x.split(' ') + words_y = y.split(' ') + if len(words_x) != len(words_y): + raise ValueError(f"attention replacement edit can only be applied on prompts with the same length" + f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.") + inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]] + inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace] + inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace] + mapper = np.zeros((max_len, max_len)) + i = j = 0 + cur_inds = 0 + while i < max_len and j < max_len: + if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i: + inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds] + if len(inds_source_) == len(inds_target_): + mapper[inds_source_, inds_target_] = 1 + else: + ratio = 1 / len(inds_target_) + for i_t in inds_target_: + mapper[inds_source_, i_t] = ratio + cur_inds += 1 + i += len(inds_source_) + j += len(inds_target_) + elif cur_inds < len(inds_source): + mapper[i, j] = 1 + i += 1 + j += 1 + else: + mapper[j, j] = 1 + i += 1 + j += 1 + + return torch.from_numpy(mapper).float() + + + +def get_replacement_mapper(prompts, tokenizer, max_len=77): + x_seq = prompts[0] + mappers = [] + for i in range(1, len(prompts)): + mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len) + mappers.append(mapper) + return torch.stack(mappers) + -- Gitee