# T-HyperGNNs **Repository Path**: ou-rui/T-HyperGNNs ## Basic Information - **Project Name**: T-HyperGNNs - **Description**: Tensor-based hypergraph neural networks - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2026-01-27 - **Last Updated**: 2026-01-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # T-HyperGNNs This is the implementation for the work ["T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations"](https://www.techrxiv.org/articles/preprint/T-HyperGNNs_Hypergraph_Neural_Networks_Via_Tensor_Representations/21984797/1), submitted to IEEE Transactions on Neural Networks and Learning Systems ## Citation If you find this work useful in your research, please consider citing: ```bibtex @article{wang2024t, title={T-HyperGNNs: Hypergraph neural networks via tensor representations}, author={Wang, Fuli and Pena-Pena, Karelia and Qian, Wei and Arce, Gonzalo R}, journal={IEEE Transactions on Neural Networks and Learning Systems}, year={2024}, publisher={IEEE} } ``` ## Getting Started ### Prerequisites Our code requires Python>=3.9. You also need these additional packages: * dask * pytorch >= 1.10.2 * tqdm ## Download Datasets Please download the datasets from [GoogleDrive](https://drive.google.com/file/d/1FGIXEIXByV65cnT_uOhVhMRxxdCsxDYX/view?usp=drive_link) and copy the `dataset` directory into this repository. ## Usage ``` usage: python train.py [--data_type DATA_TYPE] [--dataset DATASET] [--hyperG_norm HYPERG_NORM] [--model MODEL] [--self_loop SELF_LOOP] [--num_layers NUM_LAYERS] [--hid_dim HID_DIM] [--dropout DROPOUT] [--layernorm LAYERNORM] [--batchnorm BATCHNORM] [--lr LR] [--wd WD] [--train_ratio TRAIN_RATIO] [--valid_ratio VALID_RATIO] [--epochs EPOCHS] [--num_exps NUM_EXPS] [--cuda CUDA] [--seed SEED] [--combine COMBINE] [--M M] [--Mlst MLST] optional arguments: --data_type DATA_TYPE data type (coauthorship/cocitation/3dObject/new) (default: new) --dataset DATASET dataset name (e.g.: cora/dblp for coauthorship, cora/citeseer/pubmed for cocitation, ModelNet40/NTU for 3dObject, House/Walmart for new) (default: House) --hyperG_norm HYPERG_NORM whether normalize hypergraph adjacency tensor (default: False) --model MODEL T-HyperGNN Model(T-Spectral, T-Spatial, T-MPHN) (default: T-MPHN) --self_loop SELF_LOOP whether add self-loop to hypergraph (default: False) --num_layers NUM_LAYERS number of HyperGNN layers (default: 1) --hid_dim HID_DIM the dimension of embeddings at the hidden layer (default: 256) --dropout DROPOUT dropout probability after UniConv layer (default: 0.6) --layernorm LAYERNORM whether use layer normalization (default: True) --batchnorm BATCHNORM whether use batch normalization (default: True) --lr LR learning rate (default: 0.001) --wd WD weight decay (default: 0.0005) --train_ratio TRAIN_RATIO ratio of training data (default: 0.5) --valid_ratio VALID_RATIO ratio of validation data (default: 0.25) --epochs EPOCHS number of epochs to train (default: 100) --num_exps NUM_EXPS number of runs for repeated experiments (default: 10) --cuda CUDA cuda id to use (default: 0) --seed SEED seed for randomness (default: 1) --combine COMBINE the combine operation in T-MPHN (e.g., concat, sum)) --M M the maximum cardinality of the hypergraph (default: 3) --Mlst MLST the maximum cardinality of the hypergraph at each layer, max(Mlst) = M (default: [3]) ``` ## License Distributed under the MIT License. See `LICENSE` for more information.