# reinforcement-learning **Repository Path**: oufx/reinforcement-learning ## Basic Information - **Project Name**: reinforcement-learning - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2018-05-15 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

-------------------------------------------------------------------------------- > Minimal and clean examples of reinforcement learning algorithms presented by [RLCode](https://rlcode.github.io) team. [[한국어]](https://github.com/rlcode/reinforcement-learning-kr) > > Maintainers - [Woongwon](https://github.com/dnddnjs), [Youngmoo](https://github.com/zzing0907), [Hyeokreal](https://github.com/Hyeokreal), [Uiryeong](https://github.com/wooridle), [Keon](https://github.com/keon) From the basics to deep reinforcement learning, this repo provides easy-to-read code examples. One file for each algorithm. Please feel free to create a [Pull Request](https://github.com/rlcode/reinforcement-learning/pulls), or open an [issue](https://github.com/rlcode/reinforcement-learning/issues)! ## Dependencies 1. Python 3.5 2. Tensorflow 1.0.0 3. Keras 4. numpy 5. pandas 6. matplot 7. pillow 8. Skimage 9. h5py ### Install Requirements ``` pip install -r requirements.txt ``` ## Table of Contents **Grid World** - Mastering the basics of reinforcement learning in the simplified world called "Grid World" - [Policy Iteration](./1-grid-world/1-policy-iteration) - [Value Iteration](./1-grid-world/2-value-iteration) - [Monte Carlo](./1-grid-world/3-monte-carlo) - [SARSA](./1-grid-world/4-sarsa) - [Q-Learning](./1-grid-world/5-q-learning) - [Deep SARSA](./1-grid-world/6-deep-sarsa) - [REINFORCE](./1-grid-world/7-reinforce) **CartPole** - Applying deep reinforcement learning on basic Cartpole game. - [Deep Q Network](./2-cartpole/1-dqn) - [Double Deep Q Network](./2-cartpole/2-double-dqn) - [Policy Gradient](./2-cartpole/3-reinforce) - [Actor Critic (A2C)](./2-cartpole/4-actor-critic) - [Asynchronous Advantage Actor Critic (A3C)](./2-cartpole/5-a3c) **Atari** - Mastering Atari games with Deep Reinforcement Learning - **Breakout** - [DQN](./3-atari/1-breakout/breakout_dqn.py), [DDQN](./3-atari/1-breakout/breakout_ddqn.py) [Dueling DDQN](./3-atari/1-breakout/breakout_ddqn.py) [A3C](./3-atari/1-breakout/breakout_a3c.py) - **Pong** - [Policy Gradient](./3-atari/2-pong/pong_reinforce.py) **OpenAI GYM** - [WIP] - Mountain Car - [DQN](./4-gym/1-mountaincar)