# GEGFM-Paddle **Repository Path**: owhileo/gegfm-paddle ## Basic Information - **Project Name**: GEGFM-Paddle - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-09-12 - **Last Updated**: 2025-09-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Code description This is the c++ and Paddle implementation of our new graph encryption on private graph model inference. ## Requirements - SEAL version 4.1 - OpenSSL ## Running the Code ```bash cd cpp g++ main.cpp graph_load.cpp graph_enc.cpp graph_he.cpp -o gegcn -I~/helibs/include/SEAL-4.1 -L~/helibs/lib -l:libseal-4.1.a -lssl -lcrypto -O2 ./gegcn ``` Replace `~/helibs` with the path where `SEAL` library is installed. ```bash cd py python ./ProG/pre_train.py --pretrain_task Edgepred_GPPT --dataset_name PubMed --gnn_type GIN --hid_dim 128 --batch_size 256 --seed 42 --device 0 --patience 3 --epochs 75 --num_layer 2 python ./ProG/downstream_task.py --pre_train_model_path './Experiment/pre_trained_model/PubMed/Edgepred_GPPT.GIN.128hidden_dim.pth' --downstream_task NodeTask --dataset_name 'PubMed' --gnn_type 'GIN' --prompt_type 'GPF-plus' --hid_dim 128 --lr 0.0005 --decay 2e-6 --seed 42 --device 0 --hop 8 --task_num 1 --batch_size 256 --smallest_size 1 --shot_num 1000 --num_layer 2 --pnum 50 --epochs 300 python ./ProG/neighbor_sampling_task.py --gnn_type GIN --pre_train_model_path './Experiment/model/PubMed/GIN/1000-shot_GPF-plus.pth' --dataset_name 'PubMed' --seed 42 --batch_size 256 --epsilon_min 0.3 --hop 8 --smallest_size 1 --use_geometric 1 --epsilon_max 3 ``` ATTN: This package is free for academic usage. You can run it at your own risk. For other purposes, please contact yuanmj@lamda.nju.edu.cn.