24 Star 226 Fork 92

PaddlePaddle / PaddleSeg

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
mix_transformer.py 18.42 KB
一键复制 编辑 原始数据 按行查看 历史
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from functools import partial
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.nn.initializer as paddle_init
from paddleseg.cvlibs import manager
from paddleseg.utils import utils
from paddleseg.models.backbones.transformer_utils import *
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.dwconv = DWConv(hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
elif isinstance(m, nn.Conv2D):
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
fan_out //= m._groups
paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight)
if m.bias is not None:
zeros_(m.bias)
def forward(self, x, H, W):
x = self.fc1(x)
x = self.dwconv(x, H, W)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Layer):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
sr_ratio=1):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.dim = dim
self.q = nn.Linear(dim, dim, bias_attr=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias_attr=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr = nn.Conv2D(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
elif isinstance(m, nn.Conv2D):
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
fan_out //= m._groups
paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight)
if m.bias is not None:
zeros_(m.bias)
def forward(self, x, H, W):
x_shape = paddle.shape(x)
B, N = x_shape[0], x_shape[1]
C = self.dim
q = self.q(x).reshape([B, N, self.num_heads,
C // self.num_heads]).transpose([0, 2, 1, 3])
if self.sr_ratio > 1:
x_ = x.transpose([0, 2, 1]).reshape([B, C, H, W])
x_ = self.sr(x_).reshape([B, C, -1]).transpose([0, 2, 1])
x_ = self.norm(x_)
kv = self.kv(x_).reshape(
[B, -1, 2, self.num_heads,
C // self.num_heads]).transpose([2, 0, 3, 1, 4])
else:
kv = self.kv(x).reshape(
[B, -1, 2, self.num_heads,
C // self.num_heads]).transpose([2, 0, 3, 1, 4])
k, v = kv[0], kv[1]
attn = (q @k.transpose([0, 1, 3, 2])) * self.scale
attn = F.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = (attn @v).transpose([0, 2, 1, 3]).reshape([B, N, C])
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Layer):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
sr_ratio=1):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
sr_ratio=sr_ratio)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
elif isinstance(m, nn.Conv2D):
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
fan_out //= m._groups
paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight)
if m.bias is not None:
zeros_(m.bias)
def forward(self, x, H, W):
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
return x
class OverlapPatchEmbed(nn.Layer):
""" Image to Patch Embedding
"""
def __init__(self,
img_size=224,
patch_size=7,
stride=4,
in_chans=3,
embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.H, self.W = img_size[0] // patch_size[0], img_size[
1] // patch_size[1]
self.num_patches = self.H * self.W
self.proj = nn.Conv2D(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=stride,
padding=(patch_size[0] // 2, patch_size[1] // 2))
self.norm = nn.LayerNorm(embed_dim)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
elif isinstance(m, nn.Conv2D):
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
fan_out //= m._groups
paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight)
if m.bias is not None:
zeros_(m.bias)
def forward(self, x):
x = self.proj(x)
x_shape = paddle.shape(x)
H, W = x_shape[2], x_shape[3]
x = x.flatten(2).transpose([0, 2, 1])
x = self.norm(x)
return x, H, W
class MixVisionTransformer(nn.Layer):
def __init__(self,
img_size=224,
patch_size=16,
in_channels=3,
num_classes=1000,
embed_dims=[64, 128, 256, 512],
num_heads=[1, 2, 4, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer=nn.LayerNorm,
depths=[3, 4, 6, 3],
sr_ratios=[8, 4, 2, 1],
pretrained=None):
super().__init__()
self.num_classes = num_classes
self.depths = depths
self.feat_channels = embed_dims[:]
# patch_embed
self.patch_embed1 = OverlapPatchEmbed(
img_size=img_size,
patch_size=7,
stride=4,
in_chans=in_channels,
embed_dim=embed_dims[0])
self.patch_embed2 = OverlapPatchEmbed(
img_size=img_size // 4,
patch_size=3,
stride=2,
in_chans=embed_dims[0],
embed_dim=embed_dims[1])
self.patch_embed3 = OverlapPatchEmbed(
img_size=img_size // 8,
patch_size=3,
stride=2,
in_chans=embed_dims[1],
embed_dim=embed_dims[2])
self.patch_embed4 = OverlapPatchEmbed(
img_size=img_size // 16,
patch_size=3,
stride=2,
in_chans=embed_dims[2],
embed_dim=embed_dims[3])
# transformer encoder
dpr = [
x.numpy() for x in paddle.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
cur = 0
self.block1 = nn.LayerList([
Block(
dim=embed_dims[0],
num_heads=num_heads[0],
mlp_ratio=mlp_ratios[0],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + i],
norm_layer=norm_layer,
sr_ratio=sr_ratios[0]) for i in range(depths[0])
])
self.norm1 = norm_layer(embed_dims[0])
cur += depths[0]
self.block2 = nn.LayerList([
Block(
dim=embed_dims[1],
num_heads=num_heads[1],
mlp_ratio=mlp_ratios[1],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + i],
norm_layer=norm_layer,
sr_ratio=sr_ratios[1]) for i in range(depths[1])
])
self.norm2 = norm_layer(embed_dims[1])
cur += depths[1]
self.block3 = nn.LayerList([
Block(
dim=embed_dims[2],
num_heads=num_heads[2],
mlp_ratio=mlp_ratios[2],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + i],
norm_layer=norm_layer,
sr_ratio=sr_ratios[2]) for i in range(depths[2])
])
self.norm3 = norm_layer(embed_dims[2])
cur += depths[2]
self.block4 = nn.LayerList([
Block(
dim=embed_dims[3],
num_heads=num_heads[3],
mlp_ratio=mlp_ratios[3],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + i],
norm_layer=norm_layer,
sr_ratio=sr_ratios[3]) for i in range(depths[3])
])
self.norm4 = norm_layer(embed_dims[3])
self.pretrained = pretrained
self.init_weight()
def init_weight(self):
if self.pretrained is not None:
utils.load_pretrained_model(self, self.pretrained)
else:
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
elif isinstance(m, nn.Conv2D):
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
fan_out //= m._groups
paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight)
if m.bias is not None:
zeros_(m.bias)
def reset_drop_path(self, drop_path_rate):
dpr = [
x.item()
for x in paddle.linspace(0, drop_path_rate, sum(self.depths))
]
cur = 0
for i in range(self.depths[0]):
self.block1[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[0]
for i in range(self.depths[1]):
self.block2[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[1]
for i in range(self.depths[2]):
self.block3[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[2]
for i in range(self.depths[3]):
self.block4[i].drop_path.drop_prob = dpr[cur + i]
def freeze_patch_emb(self):
self.patch_embed1.requires_grad = False
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim,
num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = paddle.shape(x)[0]
outs = []
# stage 1
x, H, W = self.patch_embed1(x)
for i, blk in enumerate(self.block1):
x = blk(x, H, W)
x = self.norm1(x)
x = x.reshape([B, H, W, self.feat_channels[0]]).transpose([0, 3, 1, 2])
outs.append(x)
# stage 2
x, H, W = self.patch_embed2(x)
for i, blk in enumerate(self.block2):
x = blk(x, H, W)
x = self.norm2(x)
x = x.reshape([B, H, W, self.feat_channels[1]]).transpose([0, 3, 1, 2])
outs.append(x)
# stage 3
x, H, W = self.patch_embed3(x)
for i, blk in enumerate(self.block3):
x = blk(x, H, W)
x = self.norm3(x)
x = x.reshape([B, H, W, self.feat_channels[2]]).transpose([0, 3, 1, 2])
outs.append(x)
# stage 4
x, H, W = self.patch_embed4(x)
for i, blk in enumerate(self.block4):
x = blk(x, H, W)
x = self.norm4(x)
x = x.reshape([B, H, W, self.feat_channels[3]]).transpose([0, 3, 1, 2])
outs.append(x)
return outs
def forward(self, x):
x = self.forward_features(x)
# x = self.head(x)
return x
class DWConv(nn.Layer):
def __init__(self, dim=768):
super(DWConv, self).__init__()
self.dim = dim
self.dwconv = nn.Conv2D(dim, dim, 3, 1, 1, bias_attr=True, groups=dim)
def forward(self, x, H, W):
x_shape = paddle.shape(x)
B, N = x_shape[0], x_shape[1]
x = x.transpose([0, 2, 1]).reshape([B, self.dim, H, W])
x = self.dwconv(x)
x = x.flatten(2).transpose([0, 2, 1])
return x
@manager.BACKBONES.add_component
def MixVisionTransformer_B0(**kwargs):
return MixVisionTransformer(
patch_size=4,
embed_dims=[32, 64, 160, 256],
num_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(
nn.LayerNorm, epsilon=1e-6),
depths=[2, 2, 2, 2],
sr_ratios=[8, 4, 2, 1],
drop_rate=0.0,
drop_path_rate=0.1,
**kwargs)
@manager.BACKBONES.add_component
def MixVisionTransformer_B1(**kwargs):
return MixVisionTransformer(
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(
nn.LayerNorm, epsilon=1e-6),
depths=[2, 2, 2, 2],
sr_ratios=[8, 4, 2, 1],
drop_rate=0.0,
drop_path_rate=0.1,
**kwargs)
@manager.BACKBONES.add_component
def MixVisionTransformer_B2(**kwargs):
return MixVisionTransformer(
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(
nn.LayerNorm, epsilon=1e-6),
depths=[3, 4, 6, 3],
sr_ratios=[8, 4, 2, 1],
drop_rate=0.0,
drop_path_rate=0.1,
**kwargs)
@manager.BACKBONES.add_component
def MixVisionTransformer_B3(**kwargs):
return MixVisionTransformer(
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(
nn.LayerNorm, epsilon=1e-6),
depths=[3, 4, 18, 3],
sr_ratios=[8, 4, 2, 1],
drop_rate=0.0,
drop_path_rate=0.1,
**kwargs)
@manager.BACKBONES.add_component
def MixVisionTransformer_B4(**kwargs):
return MixVisionTransformer(
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(
nn.LayerNorm, epsilon=1e-6),
depths=[3, 8, 27, 3],
sr_ratios=[8, 4, 2, 1],
drop_rate=0.0,
drop_path_rate=0.1,
**kwargs)
@manager.BACKBONES.add_component
def MixVisionTransformer_B5(**kwargs):
return MixVisionTransformer(
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(
nn.LayerNorm, epsilon=1e-6),
depths=[3, 6, 40, 3],
sr_ratios=[8, 4, 2, 1],
drop_rate=0.0,
drop_path_rate=0.1,
**kwargs)
Python
1
https://gitee.com/paddlepaddle/PaddleSeg.git
git@gitee.com:paddlepaddle/PaddleSeg.git
paddlepaddle
PaddleSeg
PaddleSeg
release/2.7

搜索帮助