# imitation-learning **Repository Path**: paperslice/imitation-learning ## Basic Information - **Project Name**: imitation-learning - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-10-13 - **Last Updated**: 2021-11-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Conditional Imitation Learning at CARLA =============== Repository to store the conditional imitation learning based AI that runs on carla. The trained model is the one used on "CARLA: An Open Urban Driving Simulator" paper. Requirements ------- tensorflow_gpu 1.1 or more numpy scipy carla 0.8.2 PIL Running ------ Basically run: $ python run_CIL.py Note that you must have a carla server running .
To check the other options run $ python run_CIL.py --help Dataset ------ [The dataset can be downloaded here](https://drive.google.com/file/d/1hloAeyamYn-H6MfV1dRtY1gJPhkR55sY/view) 24 GB The data is stored on HDF5 files. Each HDF5 file contains 200 data points. The HDF5 contains two "datasets": 'images_center':
The RGB images stored at 200x88 resolution 'targets':
All the controls and measurements collected. They are stored on the "dataset" vector. 1. Steer, float 2. Gas, float 3. Brake, float 4. Hand Brake, boolean 5. Reverse Gear, boolean 6. Steer Noise, float 7. Gas Noise, float 8. Brake Noise, float 9. Position X, float 10. Position Y, float 11. Speed, float 12. Collision Other, float 13. Collision Pedestrian, float 14. Collision Car, float 15. Opposite Lane Inter, float 16. Sidewalk Intersect, float 17. Acceleration X,float 18. Acceleration Y, float 19. Acceleration Z, float 20. Platform time, float 21. Game Time, float 22. Orientation X, float 23. Orientation Y, float 24. Orientation Z, float 25. High level command, int ( 2 Follow lane, 3 Left, 4 Right, 5 Straight) 26. Noise, Boolean ( If the noise, perturbation, is activated, (Not Used) ) 27. Camera (Which camera was used) 28. Angle (The yaw angle for this camera) Paper ----- If you use the conditional imitation learning, please cite our ICRA 2018 paper. End-to-end Driving via Conditional Imitation Learning.
Codevilla, Felipe and Müller, Matthias and López, Antonio and Koltun, Vladlen and Dosovitskiy, Alexey. ICRA 2018 [[PDF](http://vladlen.info/papers/conditional-imitation.pdf)] ``` @inproceedings{Codevilla2018, title={End-to-end Driving via Conditional Imitation Learning}, author={Codevilla, Felipe and M{\"u}ller, Matthias and L{\'o}pez, Antonio and Koltun, Vladlen and Dosovitskiy, Alexey}, booktitle={International Conference on Robotics and Automation (ICRA)}, year={2018}, }