# FinancialMachineLearning **Repository Path**: parhat_xirin/FinancialMachineLearning ## Basic Information - **Project Name**: FinancialMachineLearning - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-12 - **Last Updated**: 2023-11-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ![FML.png](Images%2FFML.png) ## FinancialMachineLearning ### 1. Financial Machine Learning Library 금융 머신러닝 프로젝트를 위한 다양한 기능을 지원합니다 #### Bar sampling ![bar.png](Images%2Fbar.png) - Standard Bar : Tick Bar, Volume Bar, Dollar Bar - Imbalance Bar : Tick Imbalance Bar, Volume Imbalance Bar, Dollar Imbalance Bar - Run Bar : Tick Run Bar, Volume Run Bar, Dollar Run Bar #### Filter - CUSUM Filtering - ETF-trick Filtering - Kalman Filtering - Kalman Smoothering - Denoising ![denoising.png](Images%2Fdenoising.png) #### Generator Stochastic Process generator. 아래와 같은 확률 과정을 생성합니다 - Geometric Brownian Motion ![GBM.png](Images%2FGBM.png) - Ornstein Uhlenbeck Process ![OUprocess.png](Images%2FOUprocess.png) - Jump Diffusion Model ![jdprocess.png](Images%2Fjdprocess.png) - Auto Regressive Process ![ar.png](Images%2Far.png) - Microstructural Process Generator - de Prado Synthetic Process ![prado.png](Images%2Fprado.png) #### Labeling Machine Learning 학습을 위한 label분류를 진행합니다 - Triple Barrier Method - Vertical Barrier - Meta Labeling #### Portfolio portfolio 최적화를 위한 기능을 지원합니다. Machine Learning for Asset Manager(2019, de prado) - Historical Risk Parity ![hrp.png](Images%2Fhrp.png) - Critical Line Algorithms ![cla.png](Images%2Fcla.png) - Inverse Variance Optimization ![ivp.png](Images%2Fivp.png) - Black Litterman Optimization #### Regime Change 시장 국면 전환 사후 검정 모형입니다 - Chow type dickey fuller test - CUSUM test - Supremum augmented dickey fuller test #### Feature Importance Machine Learning 특성 분석을 위한 Feature Importance 계산 기능을 지원합니다 (AFML Chapter 8) - Mean Decrease Impurity (MDI) ![mdi.png](Images%2Fmdi.png) - Mean Decrease Accuracy (MDA) ![feature_importance.png](Images%2Ffeature_importance.png) - Single Feature Importance (SFI) ![sfi.png](Images%2Fsfi.png) ㅁ #### Useful Features - Concurrency ![concurrency.png](Images%2Fconcurrency.png) - Volatility - Auto Regressive Conditional Heteroscedasticity Model ![arch.png](Images%2Farch.png) - General Auto Regressive Conditional Heteroscedasticity Model ![garch.png](Images%2Fgarch.png) - Discrete Entropy ![etp_vpin.png](Images%2Fetp_vpin.png) ![vpin_etp100.png](Images%2Fvpin_etp100.png) - Approximate Entropy - Fractionally Differentiated features ![ffd.png](Images%2Fffd.png) - Dynamic Z Score #### Microstructure 시장미시구조적 특성 (Lopez de Prado, 2018) - Roll Model ![roll_model.png](Images%2Froll_model.png) - Tick Rule - Corwin Schultz ![corwinschultz.png](Images%2Fcorwinschultz.png) - Market Lambda : Kyle, Amihud, Hasbrouck ![kyle.png](Images%2Fkyle.png) ![amihud.png](Images%2Famihud.png) ![hasbrouck.png](Images%2Fhasbrouck.png) - Becker Parkinson Volatility ![bpvol.png](Images%2Fbpvol.png) - Volume-Synchronized Probability of Informed Trading Model ![vip.png](Images%2Fvip.png) #### Modeling - Purged K Fold Cross Validation - Embargo Lookback - Hyper Parameter Tuning - Log Uniform function #### Backtesting - Betting size - Backtest Statistics #### Technical Feature - RSI - MACD - Moving Average ### 2. Example Notes library 주요 기능을 사용하는 jupyter notebook 예제를 제공합니다