# AcGAN **Repository Path**: passer_x/AcGAN ## Basic Information - **Project Name**: AcGAN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-01-24 - **Last Updated**: 2021-06-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Look globally, age locally: Face aging with an attention mechanism (AcGANs) PyTorch implementation of the AcGANs algorithm in the paper ``[Look globally, age locally: Face aging with an attention mechanism.](http://arxiv.org/abs/1910.12771)''. ### 1. The Architecture of AcGANs --- ![Architecture of AcGAN](images/face_aging_network.png) ### 2. Prerequisites ---- * Python 3.6 * PyTorch 1.3.0 * GPU ### 3. Dataset & Preparation ------ * [Morph](https://ebill.uncw.edu/C20231_ustores/web/classic/product_detail.jsp?PRODUCTID=8) * [CACD](http://bcsiriuschen.github.io/CARC/_) ### 4. Training ---- Training a model by: ``` $ python main.py config/morph.yml ``` ### 5. Results ----- * Attention Results * ![attention_results](images/attention_result.png) * Results on the Morph Dataset * ![results_on_morph](images/aging_morph_result.png) * Comparison of AcGANs, IPCGANs, and CAAE in the Morph Dataset ![comparison_result](images/comparison_in_vis.png) ### 6. Citation ----- Zhu H, Huang Z, Shan H, et al. Look globally, age locally: Face aging with an attention mechanism[J]. arXiv preprint arXiv:1910.12771, 2019. ### 7. License ------ **AcGANs** is freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, contact [Junping Zhang](http://www.pami.fudan.edu.cn/~jpzhang/).