# tensorflow__profiler **Repository Path**: patterson/tensorflow__profiler ## Basic Information - **Project Name**: tensorflow__profiler - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-06-17 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TensorFlow Profiler The profiler includes a suite of tools. These tools help you understand, debug and optimize TensorFlow programs to run on CPUs, GPUs and TPUs. ## Demo First time user? Come and check out this [Colab Demo](https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras). ## Prerequisites * TensorFlow >= 2.2.0 * TensorBoard >= 2.2.0 * tensorboard-plugin-profile >= 2.2.0 Note: The TensorFlow Profiler requires access to the Internet to load the [Google Chart library](https://developers.google.com/chart/interactive/docs/basic_load_libs#basic-library-loading). Some charts and tables may be missing if you run TensorBoard entirely offline on your local machine, behind a corporate firewall, or in a datacenter. To profile on a **single GPU** system, the following NVIDIA software must be installed on your system: 1. NVIDIA GPU drivers and CUDA Toolkit: * CUDA 10.1 requires 418.x and higher. 2. Ensure that CUPTI 10.1 exists on the path. ```shell $ /sbin/ldconfig -N -v $(sed 's/:/ /g' <<< $LD_LIBRARY_PATH) | grep libcupti ``` If you don't see `libcupti.so.10.1` on the path, prepend its installation directory to the $LD_LIBRARY_PATH environmental variable: ```shell $ export LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH ``` Run the ldconfig command above again to verify that the CUPTI 10.1 library is found. To profile a system with **multiple GPUs**, see this [guide](docs/profile_multi_gpu.md) for details. To profile multi-worker GPU configurations, profile individual workers independently. To profile cloud TPUs, you must have access to Google Cloud TPUs. ## Quick Start Install nightly version of profiler by downloading and running the `install_and_run.py` script from this directory. ``` $ git clone https://github.com/tensorflow/profiler.git profiler $ mkdir profile_env $ python3 profiler/install_and_run.py --envdir=profile_env --logdir=profiler/demo ``` Go to `localhost:6006/#profile` of your browser, you should now see the demo overview page show up. ![Overview Page](docs/images/overview_page.png) Congratulations! You're now ready to capture a profile. ## Next Steps * GPU Profiling Guide: https://tensorflow.org/guide/profiler * Cloud TPU Profiling Guide: https://cloud.google.com/tpu/docs/cloud-tpu-tools * Colab Tutorial: https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras