# SSL **Repository Path**: peng-yu/ssl ## Basic Information - **Project Name**: SSL - **Description**: 保存SSL代码 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-03-20 - **Last Updated**: 2024-03-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # [IJCAI 2023] UCMT This repo is the PyTorch implementation of our paper: **["Co-training with High-Confidence Pseudo Labels for Semi-supervised Medical Image Segmentation"](https://www.ijcai.org/proceedings/2023/467)** **U**ncertainty-guided **C**ollaborative **M**ean-**T**eacher (UCMT) ## Usage 🔥🔥 the 3D version of UCMT has been uploaded. 🔥🔥 ### 0. Requirements The code is developed using Python 3.7 with PyTorch 1.11.0. All experiments in our paper were conducted on a single NVIDIA Quadro RTX 6000 with 24G GPU memory. Install from the ```requirements.txt``` using: ```angular2html pip install -r requirements.txt ``` ### 1. Data Preparation #### 1.1. Download data The original data can be downloaded in following links: * ISIC Dataset - [Link (Original)](https://challenge.isic-archive.com/data/#2018) #### 1.2. Split Dataset The ISIC dataset includes 2594 dermoscopy images and corresponding annotations. Split the dataset, resulting in 1815 images for training and 779 images for testing. ```angular2html python data/split_dataset.py ``` Then, the dataset is arranged in the following format: ``` DATA/ |-- ISIC | |-- TrainDataset | | |-- images | | |-- masks | |-- TestDataset | | |-- images | | |-- masks ``` ### 2. Training #### 2.1 Adopting DeepLabv3Plus as backbone: ```angular2html python train.py --backbone DeepLabv3p ``` #### 2.2 Adopting U-Net as backbone: ```angular2html python train.py --backbone UNet ``` ### 3. Evaluation ```angular2html python eval.py ``` ### 4. Visualization ```angular2html python visualization.py ``` ## Citation If you find this project useful, please consider citing: ``` @inproceedings{ijcai2023p467, title = {Co-training with High-Confidence Pseudo Labels for Semi-supervised Medical Image Segmentation}, author = {Shen, Zhiqiang and Cao, Peng and Yang, Hua and Liu, Xiaoli and Yang, Jinzhu and Zaiane, Osmar R.}, booktitle = {Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, {IJCAI-23}}, publisher = {International Joint Conferences on Artificial Intelligence Organization}, editor = {Edith Elkind}, pages = {4199--4207}, year = {2023}, month = {8}, note = {Main Track}, doi = {10.24963/ijcai.2023/467}, url = {https://doi.org/10.24963/ijcai.2023/467}, } ``` ## Contact If you have any questions or suggestions, please feel free to contact me ([xxszqyy@gmail.com](xxszqyy@gmail.com)). ## Acknowledgements * [TorchSemiSeg](https://github.com/charlesCXK/TorchSemiSeg) * [UA-MT](https://github.com/yulequan/UA-MT) * [SSL4MIS](https://github.com/HiLab-git/SSL4MIS)