# fast-reid-naic2021-demo **Repository Path**: pengpeng-yu/fast-reid-naic2021-demo ## Basic Information - **Project Name**: fast-reid-naic2021-demo - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 10 - **Forks**: 8 - **Created**: 2021-12-21 - **Last Updated**: 2022-04-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ### Fast Reid NAIC2021 Demo A simple demo of NAIC2021 visual feature encoding preliminary first stage based on [fast-reid](https://github.com/JDAI-CV/fast-reid). Step by Step training and inference procedures as follows. #### 1. Set up with Conda ```shell script conda create -n fastreid python=3.7 conda activate fastreid conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch pip install -r docs/requirements.txt ``` #### 2. Download preliminary dataset Download train.zip, test_A.zip from [official link](https://www.heywhale.com/home/competition/61b81042902a13001708eb17/content/2) and unzip them. Folders you will get: ``` train/ train_feature/ train_list.txt test_A/ gallery_feature_A/ query_feature_A/ ``` #### 3. Put the dataset in right place Datasets should be placed in "datasets" folder of this project. You could move or link the folders. Expected structure: ```bash path/to/this/project/ datasets/ NAIC2021Reid/ train_feature/ gallery_feature_A/ query_feature_A/ sub_train_list.txt val_gallery_list.txt val_query_list.txt ``` File lists above are generated from official train_list.txt. They are necessary for training and validation and have been already placed in desired path. File lists are not needed during inference. #### 4. Training: ```shell python tools/train_net.py --config-file ./configs/NAIC2021Reid/sbs_mlp2x.yml MODEL.DEVICE "cuda:0" # Outputs at logs/NAIC2021Reid/sbs_mlp2x ``` #### 5. Inference ```shell python tools/train_net.py --config-file ./configs/NAIC2021Reid/sbs_mlp2x_inference.yml --infer-only MODEL.DEVICE "cuda:0" # Submit file at logs/NAIC2021Reid/sbs_mlp2x_inference/Inference_On_NAIC2021ReidTestA/results.json ```