# SOG-Net **Repository Path**: pfsuo/SOG-Net ## Basic Information - **Project Name**: SOG-Net - **Description**: SOG-Net from github - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-10-25 - **Last Updated**: 2025-10-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Sum-of-Gaussians Neural Network (SOG-Net): A Machine-Learning Interatomic Potential for Long-Range Systems ## Summary Sum-of-Gaussians Neural Network (SOG-Net) is a lightweight and versatile framework for integrating long-range interactions into machine learning force field. The SOG-Net employs a latent-variable learning network that seamlessly bridges short-range and long-range components, coupled with an efficient Fourier convolution layer that incorporates long-range effects. By learning sum-of-Gaussians multipliers across different convolution layers, the SOG-Net adaptively captures diverse long-range decay behaviors while maintaining close-to-linear computational complexity during training and simulation via non-uniform fast Fourier transforms. Authors: Yajie Ji, Jiuyang Liang, Zhenli Xu. Paper Links: [ArXiv](https://arxiv.org/abs/2502.04668) ## Requirements - Python 3.10.9 or higher - Tensorflow-gpu - FINUFFT (tensorflow version) - ASE (Atomic Simulation Environment) ## Installation Please refer to the ```setup.py``` file for installation instructions. ## Quick Start Example scripts can be found in ```\Deep-SOG\examples``` and each numerical example folder in ```\CACE-SOG```, which are based on the [DeepMD](https://github.com/deepmodeling/deepmd-kit) short-range descriptor and the [CACE](https://github.com/BingqingCheng/cace) descriptor, respectively. ## License This project is licensed under the MIT License. ## Citation ``` @misc{ji2025machinelearninginteratomicpotentialslongrange, title={Machine-Learning Interatomic Potentials for Long-Range Systems}, author={Yajie Ji and Jiuyang Liang and Zhenli Xu}, year={2025}, eprint={2502.04668}, archivePrefix={arXiv}, primaryClass={physics.chem-ph}, url={https://arxiv.org/abs/2502.04668}, } ``` ## Contact For any queries regarding SOG-Net, please contact Yajie Ji (jiyajie595@sjtu.edu.cn) or Jiuyang Liang (jliang@flatironinstitute.org).