# nep-data **Repository Path**: pfsuo/nep-data ## Basic Information - **Project Name**: nep-data - **Description**: nep-data from gitlab - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2024-05-29 - **Last Updated**: 2025-12-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # nep-data Data related to the NEP machine-learned potential of `GPUMD` (https://github.com/brucefan1983/GPUMD). We only provide inputs and outputs that are compatible with the latest master version of GPUMD. | Folder | Reference(s) for data sets | Reference(s) for NEP training |Comments | | ----------- | -------- | --------- | --------- | | [2021_Fan_PbTe_demo](2021_Fan_PbTe_demo) | Zheyong Fan et al., [Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport](https://doi.org/10.1103/PhysRevB.104.104309), Phys. Rev. B. **104**, 104309 (2021). | Zheyong Fan et al., [Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport](https://doi.org/10.1103/PhysRevB.104.104309), Phys. Rev. B. **104**, 104309 (2021). |Only applicable to FCC PbTe crystal with fixed lattice constant and temperature < 900 K. | | [2022_Fan_Si_GAP2018](2022_Fan_Si_GAP2018) | Albert P. Bartók et al., [Machine Learning a General-Purpose Interatomic Potential for Silicon](https://doi.org/10.1103/PhysRevX.8.041048), Phys. Rev. X **8**, 041048 (2018). | Zheyong Fan et al., [GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations](https://aip.scitation.org/doi/10.1063/5.0106617), The Journal of Chemical Physics **157**, 114801 (2022). |Applicable to most of the phases of silicon. | | [2021_Fan_Silicene](2021_Fan_Silicene) | Zheyong Fan et al., [Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport](https://doi.org/10.1103/PhysRevB.104.104309), Phys. Rev. B. **104**, 104309 (2021). | Zheyong Fan et al., [Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport](https://doi.org/10.1103/PhysRevB.104.104309), Phys. Rev. B. **104**, 104309 (2021). |Applicable to monolayer silicene with temperature < 900 K and biaxial in-plane strain from -1% to 1%. | | [2022_Fan_C_GAP2017](2022_Fan_C_GAP2017) | Volker L. Deringer et al., [Machine learning based interatomic potential for amorphous carbon](https://doi.org/10.1103/PhysRevB.95.094203), Phys. Rev. B **95**, 094203 (2017). | Zheyong Fan et al., [GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations](https://aip.scitation.org/doi/10.1063/5.0106617), The Journal of Chemical Physics **157**, 114801 (2022). | Perhaps only good for amorphous carbon. | | [2023_Sha_PbTe_2D](2023_Sha_PbTe_2D) | Wenhao Sha et al., [Phonon thermal transport in two-dimensional PbTe monolayers via extensive molecular dynamics simulations with a neuroevolution potential](https://doi.org/10.1016/j.mtphys.2023.101066), Materials Today Physics **34**, 101066 (2023). | Wenhao Sha et al., [Phonon thermal transport in two-dimensional PbTe monolayers via extensive molecular dynamics simulations with a neuroevolution potential](https://doi.org/10.1016/j.mtphys.2023.101066), Materials Today Physics **34**, 101066 (2023). | 300K to 600K for NVT and NPT simulations. Uniaxial strain can reach up to 20%, and the biaxial strain can reach up to 15%. | | [2023_Dong_C60thermal](2023_Dong_C60thermal) | Haikuan Dong et al., [Anisotropic and high thermal conductivity in monolayer quasi-hexagonal fullerene: A comparative study against bulk phase fullerene](https://doi.org/10.1016/j.ijheatmasstransfer.2023.123943), International Journal of Heat and Mass Transfer **206**, 123943 (2023). | Haikuan Dong et al., [Anisotropic and high thermal conductivity in monolayer quasi-hexagonal fullerene: A comparative study against bulk phase fullerene](https://doi.org/10.1016/j.ijheatmasstransfer.2023.123943), International Journal of Heat and Mass Transfer **206**, 123943 (2023). |Only applicable to the systems as studied in the reference. | | [2023_Ying_C60mechanical](2023_Ying_C60mechanical) | Penghua Ying et al., [Atomistic insights into the mechanical anisotropy and fragility of monolayer fullerene networks using quantum mechanical calculations and machine-learning molecular dynamics simulations](https://doi.org/10.1016/j.eml.2022.101929). Extreme Mechanics Letter **58**, 101929 (2023). | Penghua Ying et al., [Atomistic insights into the mechanical anisotropy and fragility of monolayer fullerene networks using quantum mechanical calculations and machine-learning molecular dynamics simulations](https://doi.org/10.1016/j.eml.2022.101929). Extreme Mechanics Letter **58**, 101929 (2023). | Only applicable to the systems as studied in the reference. | | [2023_Ying_Phosphorene](2023_Ying_Phosphorene) | Volker L. Deringer et al., [A general-purpose machine-learning force field for bulk and nanostructured phosphorus](https://www.nature.com/articles/s41467-020-19168-z) Nature Communications **11**, 1 (2020). | Penghua Ying et al., [Variable thermal transport in black, blue, and violet phosphorene from extensive atomistic simulations with a neuroevolution potential](https://doi.org/10.1016/j.ijheatmasstransfer.2022.123681). International Journal of Heat and Mass Transfer **202**, 123681 (2023). | Applicable to black, blue, and violet phosphorene. | | [2023_Xu_liquid_water](2023_Xu_liquid_water) | Linfeng Zhang et al., [Phase Diagram of a Deep Potential Water Model](https://doi.org/10.1103/PhysRevLett.126.236001), Phys. Rev. Lett. **126**, 236001 (2021). | Ke Xu et al., [Accurate prediction of heat conductivity of water by a neuroevolution potentia](https://doi.org/10.1063/5.0147039), J. Chem. Phys. **158**, 204114 (2023). | Applicable to liquid water in a range of temperature and pressure. | | [2023_Ying_MOFs](2023_Ying_MOFs) | Penghua Ying et al., [Sub-Micrometer Phonon Mean Free Paths in Metal–Organic Frameworks Revealed by Machine Learning Molecular Dynamics Simulations](https://doi.org/10.1021/acsami.3c07770), ACS Appl. Mater. Interfaces **15**, 36412 (2023). | Penghua Ying et al., [Sub-Micrometer Phonon Mean Free Paths in Metal–Organic Frameworks Revealed by Machine Learning Molecular Dynamics Simulations](https://doi.org/10.1021/acsami.3c07770), ACS Appl. Mater. Interfaces **15**, 36412 (2023). | See the publication. | | [2023_Zhao_PdCuNiP](2023_Zhao_PdCuNiP) | Rui Zhao et al., [Development of a neuroevolution machine learning potential of Pd-Cu-Ni-P alloys](https://doi.org/10.1016/j.matdes.2023.112012), Materials & Design **231**, 112012 (2023). | Rui Zhao et al., [Development of a neuroevolution machine learning potential of Pd-Cu-Ni-P alloys](https://doi.org/10.1016/j.matdes.2023.112012), Materials & Design **231**, 112012 (2023). | See the publication. | | [2023_Liang_SiO2](2023_Liang_SiO2) | Linus C. Erhard et al., [A machine-learned interatomic potential for silica and its relation to empirical models](https://www.nature.com/articles/s41524-022-00768-w), npj Computational Materials **8**, 90 (2022). | Ting Liang et al., [Mechanisms of temperature-dependent thermal transport in amorphous silica from machine-learning molecular dynamics](https://doi.org/10.1103/PhysRevB.108.184203) | A general-purpose model for SiO2. | | [2023_Ying_bilayer_graphene](2023_Ying_bilayer_graphene) | Penghua Ying et al., [Combining the D3 dispersion correction with the neuroevolution machine-learned potential](https://doi.org/10.1088/1361-648X/ad1278) | Penghua Ying et al., [Combining the D3 dispersion correction with the neuroevolution machine-learned potential](https://doi.org/10.1088/1361-648X/ad1278) | Only for bilayer graphene without defects, but good for describing binding and sliding energies. | | [2023_Shi_CsPbX(X=Cl,Br,I)](2023_Shi_CsPbX(X=Cl,Br,I)) | Yongbo Shi et al., [Investigation of phase transition, mechanical behavior and lattice thermal conductivity of halogen perovskites using machine learning interatomic potentials](https://doi.org/10.1039/D3CP04657E) | [Investigation of phase transition, mechanical behavior and lattice thermal conductivity of halogen perovskites using machine learning interatomic potentials](https://doi.org/10.1039/D3CP04657E) | See the publication. | | [2023_Zhang_HfO2](2023_Zhang_HfO2) | Ganesh Sivaraman et tal., [Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide](https://doi.org/10.1038/s41524-020-00367-7) | Zhang et tal., [Vibrational anharmonicity results in decreased thermal conductivity of amorphous HfO2 at high temperature](https://doi.org/10.1103/PhysRevB.108.045422) | Good for liquid and amorphous HfO2 | | [2024_Dong_Si](2024_Dong_Si) | Haikuan Dong et al., [Molecular dynamics simulations of heat transport using machine-learned potentials: A mini review and tutorial on GPUMD with neuroevolution potentials](https://doi.org/10.1063/5.0200833), J. Appl. Phys. **135**, 161101 (2024) | Haikuan Dong et al., [Molecular dynamics simulations of heat transport using machine-learned potentials: A mini review and tutorial on GPUMD with neuroevolution potentials](https://doi.org/10.1063/5.0200833), J. Appl. Phys. **135**, 161101 (2024) | Crystalline silicon up to 1000 K under zero pressure. | | [2024_Wu_C_Si_GaAs_PbTe](2024_Wu_C_Si_GaAs_PbTe) | Xiguang Wu et al., [Correcting force error-induced underestimation of lattice thermal conductivity in machine learning molecular dynamics](https://doi.org/10.1063/5.0213811), J. Chem. Phys. **161**, 014103 (2024) | Xiguang Wu et al., [Correcting force error-induced underestimation of lattice thermal conductivity in machine learning molecular dynamics](https://doi.org/10.1063/5.0213811), J. Chem. Phys. **161**, 014103 (2024) | Used to demonstrate heat transport calculations in perfect crystals. | | [2024_Wu_MoSe2-WSe2](2024_Wu_MoSe2) | Xin Wu et al., [Phonon coherence and minimum thermal conductivity in disordered superlattice](https://doi.org/10.48550/arXiv.2410.01311) | Xin Wu et al., [Phonon coherence and minimum thermal conductivity in disordered superlattice](https://doi.org/10.48550/arXiv.2410.01311) | See the publication. | | [2024_Ying_LiH](2024_Ying_LiH) | Penghua Ying et al., [Highly efficient path-integral molecular dynamics simulations with GPUMD using neuroevolution potentials: Case studies on thermal properties of materials](https://doi.org/10.48550/arXiv.2409.04430) | Penghua Ying et al., [Highly efficient path-integral molecular dynamics simulations with GPUMD using neuroevolution potentials: Case studies on thermal properties of materials](https://doi.org/10.48550/arXiv.2409.04430) | See the publication. | | [2024_Wang_C](2024_Wang_C) | Yanzhou Wang et al., [Density dependence of thermal conductivity in nanoporous and amorphous carbon with machine-learned molecular dynamics](https://doi.org/10.48550/arXiv.2408.12390) | Yanzhou Wang et al., [Density dependence of thermal conductivity in nanoporous and amorphous carbon with machine-learned molecular dynamics](https://doi.org/10.48550/arXiv.2408.12390) | General-purpose carbon potential | | [2024_Fan_C_GAP2020](2024_Fan_C_GAP2020) | Patrick Rowe et al., [An accurate and transferable machine learning potential for carbon](https://doi.org/10.1063/5.0005084), J. Chem. Phys. **153**, 034702 (2020); | Fan et al., [Combining linear-scaling quantum transport and machine-learning molecular dynamics to study thermal and electronic transports in complex materials](https://doi.org/10.1088/1361-648X/ad31c2), J. Phys.: Condens. Matter **36** , 245901 (2024) | Applicable to many carbon systems. | | [2024_Wang_Ga2O3](2024_Wang_Ga2O3) | Xiaonan Wang et al., [Dissimilar thermal transport properties in kappa-Ga2O3 and beta-Ga2O3 revealed by machine-learning homogeneous nonequilibrium molecular dynamics simulations](https://doi.org/10.1063/5.0185854), J. Appl. Phys. **135**, 065104 (2024) | Xiaonan Wang et al., [Dissimilar thermal transport properties in kappa-Ga2O3 and beta-Ga2O3 revealed by machine-learning homogeneous nonequilibrium molecular dynamics simulations](https://doi.org/10.1063/5.0185854), J. Appl. Phys. **135**, 065104 (2024) | Only for beta and kappa Ga2O3 crystals. | | [2025_Li_ICOF-10n-M](2025_Li_ICOF-10n-M) | Ke Li et al., [Decoding the Thermal Conductivity of Ionic Covalent Organic Frameworks: Optical Phonons as Key Determinants Revealed by Neuroevolution Potential](https://doi.org/10.1016/j.mtphys.2025.101724), Materials Today Physics **54** (2025) 101724 | Ke Li et al., [Decoding the Thermal Conductivity of Ionic Covalent Organic Frameworks: Optical Phonons as Key Determinants Revealed by Neuroevolution Potential](https://doi.org/10.1016/j.mtphys.2025.101724), Materials Today Physics **54** (2025) 101724 | Only for ICOFs-10n-M. | | [2025_Wang_diamond-cBN](2025_Wang_diamond-cBN) | Xiaonan Wang et al., Interface phonon modes governing the ideal limit of thermal transport across diamond/cubic boron nitride interfaces | Xiaonan Wang et al., Interface phonon modes governing the ideal limit of thermal transport across diamond/cubic boron nitride interfaces | See publication. | | [2025_Liang_Gr_hbn](2025_Liang_Gr_hbn) | Ting Liang et al., [Probing the ideal limit of interfacial thermal conductance in two-dimensional van der Waals heterostructures.](https://arxiv.org/abs/2502.13601) | Ting Liang et al., [Probing the ideal limit of interfacial thermal conductance in two-dimensional van der Waals heterostructures.](https://arxiv.org/abs/2502.13601) | For multilayer graphene, hbn, and their heterostructure. |