# reaxnet **Repository Path**: pfsuo/reaxnet ## Basic Information - **Project Name**: reaxnet - **Description**: reaxnet from github - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-12-03 - **Last Updated**: 2025-12-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

ReaxNet

![vistors](https://visitor-badge.laobi.icu/badge?page_id=reaxnet.reaxnet&right_color=green)

**ReaxNet** package is a JAX implementation of polarizable long-rang interactions integrated equivariant neural network potential. ## Framework overview ![framework](site/framework.png) ## Installation ### Easy install ```bash pip install git+https://github.com/reaxnet/reaxnet.git ``` ### Advanced install (recommend) For NVIDIA-GPU acceleration, you should compile the JAX library with CUDA support. Please refer to the [JAX installation guide](https://jax.readthedocs.io/en/latest/installation.html#installation) for other platforms acceleration. ```bash pip install -U "jax[cuda12]" pip install git+https://github.com/reaxnet/reaxnet.git ``` ## Usage ### Basic usage The basic usage of **ReaxNet** is demonstrated in the [basic.ipynb](./examples/basic.ipynb) notebook. Please note that you should carefully read the [jax-md](https://github.com/jax-md/jax-md) codes when using the neighbor list. ### Fine-tuning the pretrained model We provide a pretrained model, which can be used to fine-tune on your own dataset. The detailed fine-tuning process can be found in the [fine_tuning.ipynb](./examples/fine_tuning.ipynb). ### Example notebooks: | Notebooks | Descriptions | | -------- | ----------- | | [basic.ipynb](./examples/basic.ipynb) | Examples for prediction of energy and forces for atomic structure. | | [non_bond.ipynb](./examples/non_bond.ipynb) | Examples for calculation of polarizable long-range interactions. | | [fine_tuning.ipynb](./examples/fine_tuning.ipynb) | Examples for fine-tuning the pretrained model. | ## Code test environment ### Python Dependencies - Python 3.9 - [JAX](https://github.com/jax-ml/jax) 0.4.20 - [JAX-MD](https://github.com/jax-md/jax-md) 0.2.8 - [NumPy](https://numpy.org/) 1.23.4 - [ASE](https://gitlab.com/ase/ase) 3.23.0 - [e3nn_jax](https://github.com/e3nn/e3nn-jax) 0.20.7 - [flax](https://github.com/google/flax) 0.10.0 - [jraph](https://github.com/google-deepmind/jraph) 0.0.6 - [optax](https://github.com/google-deepmind/optax) 0.1.8 - [matscipy](https://github.com/libAtoms/matscipy) 1.0.0 ### OS The code has tested on: - Ubuntu 22.04.4 LTS - MacOS 14.7 ## Reference If you use this repository, please cite the following [paper](https://www.nature.com/articles/s41467-025-65496-3): ```bib @article{reaxnet, title={A foundation machine learning potential with polarizable long-range interactions for materials modelling}, author={Gao, Rongzhi and Yam, ChiYung and Mao, Jianjun and Chen, Shuguang and Chen, GuanHua and Hu, Ziyang}, journal={Nature Communications}, volume={16}, pages={10484}, year={2025}, } ```