# reaxnet
**Repository Path**: pfsuo/reaxnet
## Basic Information
- **Project Name**: reaxnet
- **Description**: reaxnet from github
- **Primary Language**: Unknown
- **License**: GPL-3.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-12-03
- **Last Updated**: 2025-12-03
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
ReaxNet

**ReaxNet** package is a JAX implementation of polarizable long-rang interactions integrated equivariant neural network potential.
## Framework overview

## Installation
### Easy install
```bash
pip install git+https://github.com/reaxnet/reaxnet.git
```
### Advanced install (recommend)
For NVIDIA-GPU acceleration, you should compile the JAX library with CUDA support. Please refer to the [JAX installation guide](https://jax.readthedocs.io/en/latest/installation.html#installation) for other platforms acceleration.
```bash
pip install -U "jax[cuda12]"
pip install git+https://github.com/reaxnet/reaxnet.git
```
## Usage
### Basic usage
The basic usage of **ReaxNet** is demonstrated in the [basic.ipynb](./examples/basic.ipynb) notebook. Please note that you should carefully read the [jax-md](https://github.com/jax-md/jax-md) codes when using the neighbor list.
### Fine-tuning the pretrained model
We provide a pretrained model, which can be used to fine-tune on your own dataset. The detailed fine-tuning process can be found in the [fine_tuning.ipynb](./examples/fine_tuning.ipynb).
### Example notebooks:
| Notebooks | Descriptions |
| -------- | ----------- |
| [basic.ipynb](./examples/basic.ipynb) | Examples for prediction of energy and forces for atomic structure. |
| [non_bond.ipynb](./examples/non_bond.ipynb) | Examples for calculation of polarizable long-range interactions. |
| [fine_tuning.ipynb](./examples/fine_tuning.ipynb) | Examples for fine-tuning the pretrained model. |
## Code test environment
### Python Dependencies
- Python 3.9
- [JAX](https://github.com/jax-ml/jax) 0.4.20
- [JAX-MD](https://github.com/jax-md/jax-md) 0.2.8
- [NumPy](https://numpy.org/) 1.23.4
- [ASE](https://gitlab.com/ase/ase) 3.23.0
- [e3nn_jax](https://github.com/e3nn/e3nn-jax) 0.20.7
- [flax](https://github.com/google/flax) 0.10.0
- [jraph](https://github.com/google-deepmind/jraph) 0.0.6
- [optax](https://github.com/google-deepmind/optax) 0.1.8
- [matscipy](https://github.com/libAtoms/matscipy) 1.0.0
### OS
The code has tested on:
- Ubuntu 22.04.4 LTS
- MacOS 14.7
## Reference
If you use this repository, please cite the following [paper](https://www.nature.com/articles/s41467-025-65496-3):
```bib
@article{reaxnet,
title={A foundation machine learning potential with polarizable long-range interactions for materials modelling},
author={Gao, Rongzhi and Yam, ChiYung and Mao, Jianjun and Chen, Shuguang and Chen, GuanHua and Hu, Ziyang},
journal={Nature Communications},
volume={16},
pages={10484},
year={2025},
}
```