# Lite-Mono **Repository Path**: pimath/Lite-Mono ## Basic Information - **Project Name**: Lite-Mono - **Description**: 未加点云的baseline - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2023-10-22 - **Last Updated**: 2025-04-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
(Lite-Mono-8m 1024x320)
## Results
### KITTI
You can download the trained models using the links below.
| --model | Params | ImageNet Pretrained | Input size | Abs Rel | Sq Rel | RMSE | RMSE log | delta < 1.25 | delta < 1.25^2 | delta < 1.25^3 |
|:---------------:|:------:|:-------------------:|:----------:|:---------:|:---------:|:---------:|:---------:|:------------:|:--------------:|:--------------:|
| [**lite-mono**](https://surfdrive.surf.nl/files/index.php/s/CUjiK221EFLyXDY) | 3.1M | [yes](https://surfdrive.surf.nl/files/index.php/s/InMMGd5ZP2fXuia) | 640x192 | 0.107 | 0.765 | 4.561 | 0.183 | 0.886 | 0.963 | 0.983 |
| [lite-mono-small](https://surfdrive.surf.nl/files/index.php/s/8cuZNH1CkNtQwxQ) | 2.5M | [yes](https://surfdrive.surf.nl/files/index.php/s/DYbWV4bsWImfJKu) | 640x192 | 0.110 | 0.802 | 4.671 | 0.186 | 0.879 | 0.961 | 0.982 |
| [lite-mono-tiny](https://surfdrive.surf.nl/files/index.php/s/TFDlF3wYQy0Nhmg) | 2.2M | yes | 640x192 | 0.110 | 0.837 | 4.710 | 0.187 | 0.880 | 0.960 | 0.982 |
| [**lite-mono-8m**](https://surfdrive.surf.nl/files/index.php/s/UlkVBi1p99NFWWI) | 8.7M | [yes](https://surfdrive.surf.nl/files/index.php/s/oil2ME6ymoLGDlL) | 640x192 | 0.101 | 0.729 | 4.454 | 0.178 | 0.897 | 0.965 | 0.983 |
| [**lite-mono**](https://surfdrive.surf.nl/files/index.php/s/IK3VtPj6b5FkVnl) | 3.1M | yes | 1024x320 | 0.102 | 0.746 | 4.444 | 0.179 | 0.896 | 0.965 | 0.983 |
| [lite-mono-small](https://surfdrive.surf.nl/files/index.php/s/w8mvJMkB1dP15pu) | 2.5M | yes | 1024x320 | 0.103 | 0.757 | 4.449 | 0.180 | 0.894 | 0.964 | 0.983 |
| [lite-mono-tiny](https://surfdrive.surf.nl/files/index.php/s/myxcplTciOkgu5w) | 2.2M | yes | 1024x320 | 0.104 | 0.764 | 4.487 | 0.180 | 0.892 | 0.964 | 0.983 |
| [**lite-mono-8m**](https://surfdrive.surf.nl/files/index.php/s/mgonNFAvoEJmMas) | 8.7M | yes | 1024x320 | 0.097 | 0.710 | 4.309 | 0.174 | 0.905 | 0.967 | 0.984 |
### Speed Evaluation
### Robustness
The [RoboDepth Challenge Team](https://github.com/ldkong1205/RoboDepth) is evaluating the robustness of different depth estimation algorithms. Lite-Mono has achieved the best robustness to date.
## Data Preparation
Please refer to [Monodepth2](https://github.com/nianticlabs/monodepth2) to prepare your KITTI data.
## Single Image Test
python test_simple.py --load_weights_folder path/to/your/weights/folder --image_path path/to/your/test/image
## Evaluation
python evaluate_depth.py --load_weights_folder path/to/your/weights/folder --data_path path/to/kitti_data/ --model lite-mono
## Training
#### dependency installation
pip install 'git+https://github.com/saadnaeem-dev/pytorch-linear-warmup-cosine-annealing-warm-restarts-weight-decay'
#### start training
python train.py --data_path path/to/your/data --model_name mytrain --num_epochs 30 --batch_size 12 --mypretrain path/to/your/pretrained/weights --lr 0.0001 5e-6 31 0.0001 1e-5 31
#### tensorboard visualization
tensorboard --log_dir ./tmp/mytrain
## Citation
@InProceedings{Zhang_2023_CVPR,
author = {Zhang, Ning and Nex, Francesco and Vosselman, George and Kerle, Norman},
title = {Lite-Mono: A Lightweight CNN and Transformer Architecture for Self-Supervised Monocular Depth Estimation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {18537-18546}
}