Fetch the repository succeeded.
// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
// // Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package core
import (
"github.com/pingcap/tidb/ast"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/model"
"github.com/pingcap/tidb/mysql"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/types"
)
type ppdSolver struct{}
func (s *ppdSolver) optimize(lp LogicalPlan) (LogicalPlan, error) {
_, p := lp.PredicatePushDown(nil)
return p, nil
}
func addSelection(p LogicalPlan, child LogicalPlan, conditions []expression.Expression, chIdx int) {
if len(conditions) == 0 {
p.Children()[chIdx] = child
return
}
conditions = expression.PropagateConstant(p.context(), conditions)
// Return table dual when filter is constant false or null.
dual := conds2TableDual(child, conditions)
if dual != nil {
p.Children()[chIdx] = dual
return
}
selection := LogicalSelection{Conditions: conditions}.init(p.context())
selection.SetChildren(child)
p.Children()[chIdx] = selection
}
// PredicatePushDown implements LogicalPlan interface.
func (p *baseLogicalPlan) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) {
if len(p.children) == 0 {
return predicates, p.self
}
child := p.children[0]
rest, newChild := child.PredicatePushDown(predicates)
addSelection(p.self, newChild, rest, 0)
return nil, p.self
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalSelection) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) {
retConditions, child := p.children[0].PredicatePushDown(append(p.Conditions, predicates...))
if len(retConditions) > 0 {
p.Conditions = expression.PropagateConstant(p.ctx, retConditions)
// Return table dual when filter is constant false or null.
dual := conds2TableDual(p, p.Conditions)
if dual != nil {
return nil, dual
}
return nil, p
}
return nil, child
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalUnionScan) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) {
retainedPredicates, _ := p.children[0].PredicatePushDown(predicates)
p.conditions = make([]expression.Expression, 0, len(predicates))
for _, cond := range predicates {
p.conditions = append(p.conditions, cond)
}
// The conditions in UnionScan is only used for added rows, so parent Selection should not be removed.
return retainedPredicates, p
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (ds *DataSource) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) {
_, ds.pushedDownConds, predicates = expression.ExpressionsToPB(ds.ctx.GetSessionVars().StmtCtx, predicates, ds.ctx.GetClient())
return predicates, ds
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalTableDual) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) {
return predicates, p
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalJoin) PredicatePushDown(predicates []expression.Expression) (ret []expression.Expression, retPlan LogicalPlan) {
simplifyOuterJoin(p, predicates)
joinGroup := getCartesianJoinGroup(p)
if joinGroup != nil {
e := joinReOrderSolver{ctx: p.ctx}
e.reorderJoin(joinGroup, predicates)
newJoin := e.resultJoin
return newJoin.PredicatePushDown(predicates)
}
leftPlan := p.children[0]
rightPlan := p.children[1]
var equalCond []*expression.ScalarFunction
var leftPushCond, rightPushCond, otherCond, leftCond, rightCond []expression.Expression
switch p.JoinType {
case LeftOuterJoin, LeftOuterSemiJoin, AntiLeftOuterSemiJoin:
// Handle where conditions
predicates = expression.ExtractFiltersFromDNFs(p.ctx, predicates)
// Only derive left where condition, because right where condition cannot be pushed down
equalCond, leftPushCond, rightPushCond, otherCond = extractOnCondition(predicates, leftPlan, rightPlan, true, false)
leftCond = leftPushCond
// Handle join conditions, only derive right join condition, because left join condition cannot be pushed down
_, derivedRightJoinCond := deriveOtherConditions(p, false, true)
rightCond = append(p.RightConditions, derivedRightJoinCond...)
p.RightConditions = nil
ret = append(expression.ScalarFuncs2Exprs(equalCond), otherCond...)
ret = append(ret, rightPushCond...)
case RightOuterJoin:
// Handle where conditions
predicates = expression.ExtractFiltersFromDNFs(p.ctx, predicates)
// Only derive right where condition, because left where condition cannot be pushed down
equalCond, leftPushCond, rightPushCond, otherCond = extractOnCondition(predicates, leftPlan, rightPlan, false, true)
rightCond = rightPushCond
// Handle join conditions, only derive left join condition, because right join condition cannot be pushed down
derivedLeftJoinCond, _ := deriveOtherConditions(p, true, false)
leftCond = append(p.LeftConditions, derivedLeftJoinCond...)
p.LeftConditions = nil
ret = append(expression.ScalarFuncs2Exprs(equalCond), otherCond...)
ret = append(ret, leftPushCond...)
case SemiJoin, AntiSemiJoin, InnerJoin:
tempCond := make([]expression.Expression, 0, len(p.LeftConditions)+len(p.RightConditions)+len(p.EqualConditions)+len(p.OtherConditions)+len(predicates))
tempCond = append(tempCond, p.LeftConditions...)
tempCond = append(tempCond, p.RightConditions...)
tempCond = append(tempCond, expression.ScalarFuncs2Exprs(p.EqualConditions)...)
tempCond = append(tempCond, p.OtherConditions...)
tempCond = append(tempCond, predicates...)
tempCond = expression.ExtractFiltersFromDNFs(p.ctx, tempCond)
tempCond = expression.PropagateConstant(p.ctx, tempCond)
// Return table dual when filter is constant false or null.
dual := conds2TableDual(p, tempCond)
if dual != nil {
return ret, dual
}
equalCond, leftPushCond, rightPushCond, otherCond = extractOnCondition(tempCond, leftPlan, rightPlan, true, true)
p.LeftConditions = nil
p.RightConditions = nil
p.EqualConditions = equalCond
p.OtherConditions = otherCond
leftCond = leftPushCond
rightCond = rightPushCond
}
leftRet, lCh := leftPlan.PredicatePushDown(leftCond)
rightRet, rCh := rightPlan.PredicatePushDown(rightCond)
addSelection(p, lCh, leftRet, 0)
addSelection(p, rCh, rightRet, 1)
p.updateEQCond()
for _, eqCond := range p.EqualConditions {
p.LeftJoinKeys = append(p.LeftJoinKeys, eqCond.GetArgs()[0].(*expression.Column))
p.RightJoinKeys = append(p.RightJoinKeys, eqCond.GetArgs()[1].(*expression.Column))
}
p.mergeSchema()
p.buildKeyInfo()
return ret, p.self
}
// updateEQCond will extract the arguments of a equal condition that connect two expressions.
func (p *LogicalJoin) updateEQCond() {
lChild, rChild := p.children[0], p.children[1]
var lKeys, rKeys []expression.Expression
for i := len(p.OtherConditions) - 1; i >= 0; i-- {
need2Remove := false
if eqCond, ok := p.OtherConditions[i].(*expression.ScalarFunction); ok && eqCond.FuncName.L == ast.EQ {
lExpr, rExpr := eqCond.GetArgs()[0], eqCond.GetArgs()[1]
if expression.ExprFromSchema(lExpr, lChild.Schema()) && expression.ExprFromSchema(rExpr, rChild.Schema()) {
lKeys = append(lKeys, lExpr)
rKeys = append(rKeys, rExpr)
need2Remove = true
} else if expression.ExprFromSchema(lExpr, rChild.Schema()) && expression.ExprFromSchema(rExpr, lChild.Schema()) {
lKeys = append(lKeys, rExpr)
rKeys = append(rKeys, lExpr)
need2Remove = true
}
}
if need2Remove {
p.OtherConditions = append(p.OtherConditions[:i], p.OtherConditions[i+1:]...)
}
}
if len(lKeys) > 0 {
lProj := p.getProj(0)
rProj := p.getProj(1)
for i := range lKeys {
lKey := lProj.appendExpr(lKeys[i])
rKey := rProj.appendExpr(rKeys[i])
eqCond := expression.NewFunctionInternal(p.ctx, ast.EQ, types.NewFieldType(mysql.TypeTiny), lKey, rKey)
p.EqualConditions = append(p.EqualConditions, eqCond.(*expression.ScalarFunction))
}
}
}
func (p *LogicalProjection) appendExpr(expr expression.Expression) *expression.Column {
if col, ok := expr.(*expression.Column); ok {
return col
}
expr = expression.ColumnSubstitute(expr, p.schema, p.Exprs)
p.Exprs = append(p.Exprs, expr)
col := &expression.Column{
UniqueID: p.ctx.GetSessionVars().AllocPlanColumnID(),
ColName: model.NewCIStr(expr.String()),
RetType: expr.GetType(),
}
p.schema.Append(col)
return col
}
func (p *LogicalJoin) getProj(idx int) *LogicalProjection {
child := p.children[idx]
proj, ok := child.(*LogicalProjection)
if ok {
return proj
}
proj = LogicalProjection{Exprs: make([]expression.Expression, 0, child.Schema().Len())}.init(p.ctx)
for _, col := range child.Schema().Columns {
proj.Exprs = append(proj.Exprs, col)
}
proj.SetSchema(child.Schema().Clone())
proj.SetChildren(child)
p.children[idx] = proj
return proj
}
// simplifyOuterJoin transforms "LeftOuterJoin/RightOuterJoin" to "InnerJoin" if possible.
func simplifyOuterJoin(p *LogicalJoin, predicates []expression.Expression) {
if p.JoinType != LeftOuterJoin && p.JoinType != RightOuterJoin && p.JoinType != InnerJoin {
return
}
innerTable := p.children[0]
outerTable := p.children[1]
if p.JoinType == LeftOuterJoin {
innerTable, outerTable = outerTable, innerTable
}
// first simplify embedded outer join.
if innerPlan, ok := innerTable.(*LogicalJoin); ok {
simplifyOuterJoin(innerPlan, predicates)
}
if outerPlan, ok := outerTable.(*LogicalJoin); ok {
simplifyOuterJoin(outerPlan, predicates)
}
if p.JoinType == InnerJoin {
return
}
// then simplify embedding outer join.
canBeSimplified := false
for _, expr := range predicates {
isOk := isNullRejected(p.ctx, innerTable.Schema(), expr)
if isOk {
canBeSimplified = true
break
}
}
if canBeSimplified {
p.JoinType = InnerJoin
}
}
// isNullRejected check whether a condition is null-rejected
// A condition would be null-rejected in one of following cases:
// If it is a predicate containing a reference to an inner table that evaluates to UNKNOWN or FALSE when one of its arguments is NULL.
// If it is a conjunction containing a null-rejected condition as a conjunct.
// If it is a disjunction of null-rejected conditions.
func isNullRejected(ctx sessionctx.Context, schema *expression.Schema, expr expression.Expression) bool {
expr = expression.PushDownNot(nil, expr, false)
sc := ctx.GetSessionVars().StmtCtx
sc.InNullRejectCheck = true
result := expression.EvaluateExprWithNull(ctx, schema, expr)
sc.InNullRejectCheck = false
x, ok := result.(*expression.Constant)
if !ok {
return false
}
if x.Value.IsNull() {
return true
} else if isTrue, err := x.Value.ToBool(sc); err == nil && isTrue == 0 {
return true
}
return false
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalProjection) PredicatePushDown(predicates []expression.Expression) (ret []expression.Expression, retPlan LogicalPlan) {
var push = make([]expression.Expression, 0, p.Schema().Len())
for _, cond := range predicates {
push = append(push, expression.ColumnSubstitute(cond, p.Schema(), p.Exprs))
}
return p.baseLogicalPlan.PredicatePushDown(push)
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalUnionAll) PredicatePushDown(predicates []expression.Expression) (ret []expression.Expression, retPlan LogicalPlan) {
for i, proj := range p.children {
newExprs := make([]expression.Expression, 0, len(predicates))
for _, cond := range predicates {
newExprs = append(newExprs, cond)
}
retCond, newChild := proj.PredicatePushDown(newExprs)
addSelection(p, newChild, retCond, i)
}
return nil, p
}
// getGbyColIndex gets the column's index in the group-by columns.
func (la *LogicalAggregation) getGbyColIndex(col *expression.Column) int {
return expression.NewSchema(la.groupByCols...).ColumnIndex(col)
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (la *LogicalAggregation) PredicatePushDown(predicates []expression.Expression) (ret []expression.Expression, retPlan LogicalPlan) {
var condsToPush []expression.Expression
exprsOriginal := make([]expression.Expression, 0, len(la.AggFuncs))
for _, fun := range la.AggFuncs {
exprsOriginal = append(exprsOriginal, fun.Args[0])
}
for _, cond := range predicates {
switch cond.(type) {
case *expression.Constant:
condsToPush = append(condsToPush, cond)
// Consider SQL list "select sum(b) from t group by a having 1=0". "1=0" is a constant predicate which should be
// retained and pushed down at the same time. Because we will get a wrong query result that contains one column
// with value 0 rather than an empty query result.
ret = append(ret, cond)
case *expression.ScalarFunction:
extractedCols := expression.ExtractColumns(cond)
ok := true
for _, col := range extractedCols {
if la.getGbyColIndex(col) == -1 {
ok = false
break
}
}
if ok {
newFunc := expression.ColumnSubstitute(cond, la.Schema(), exprsOriginal)
condsToPush = append(condsToPush, newFunc)
} else {
ret = append(ret, cond)
}
default:
ret = append(ret, cond)
}
}
la.baseLogicalPlan.PredicatePushDown(condsToPush)
return ret, la
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalLimit) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) {
// Limit forbids any condition to push down.
p.baseLogicalPlan.PredicatePushDown(nil)
return predicates, p
}
// PredicatePushDown implements LogicalPlan PredicatePushDown interface.
func (p *LogicalMaxOneRow) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) {
// MaxOneRow forbids any condition to push down.
p.baseLogicalPlan.PredicatePushDown(nil)
return predicates, p
}
// deriveOtherConditions given a LogicalJoin, check the OtherConditions to see if we can derive more
// conditions for left/right child pushdown.
func deriveOtherConditions(p *LogicalJoin, deriveLeft bool, deriveRight bool) (leftCond []expression.Expression,
rightCond []expression.Expression) {
leftPlan := p.children[0]
rightPlan := p.children[1]
for _, expr := range p.OtherConditions {
if deriveLeft {
leftRelaxedCond := expression.DeriveRelaxedFiltersFromDNF(expr, leftPlan.Schema())
if leftRelaxedCond != nil {
leftCond = append(leftCond, leftRelaxedCond)
}
}
if deriveRight {
rightRelaxedCond := expression.DeriveRelaxedFiltersFromDNF(expr, rightPlan.Schema())
if rightRelaxedCond != nil {
rightCond = append(rightCond, rightRelaxedCond)
}
}
}
return
}
// conds2TableDual builds a LogicalTableDual if cond is constant false or null.
func conds2TableDual(p LogicalPlan, conds []expression.Expression) LogicalPlan {
if len(conds) != 1 {
return nil
}
con, ok := conds[0].(*expression.Constant)
if !ok {
return nil
}
sc := p.context().GetSessionVars().StmtCtx
if isTrue, err := con.Value.ToBool(sc); (err == nil && isTrue == 0) || con.Value.IsNull() {
dual := LogicalTableDual{}.init(p.context())
dual.SetSchema(p.Schema())
return dual
}
return nil
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。