# FAST_LIO_SLAM **Repository Path**: potpaste/FAST_LIO_SLAM ## Basic Information - **Project Name**: FAST_LIO_SLAM - **Description**: aaaaaaaaaaaaaaaa - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-02-06 - **Last Updated**: 2023-02-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # FAST_LIO_SLAM ## 中文注释说明 在学习`FAST-LIO2`的过程中,希望着重理解`ikd-tree`的算法哲学和代码思路,因此基于自己的理解和思考,在代码里做了相关的中文注释。注释部分难免有误,欢迎大家批评指正。 ## News - ``Aug 2021``: The Livox-lidar tests and corresponding launch files will be uploaded soon. Currenty only Ouster lidar tutorial videos had been made. ## What is FAST_LIO_SLAM? Integration of 1. [FAST-LIO2](https://github.com/hku-mars/FAST_LIO) (Odometry): A computationally efficient and robust LiDAR-inertial odometry (LIO) package 2. [SC-PGO](https://github.com/gisbi-kim/SC-A-LOAM) (Loop detection and Pose-graph Optimization): [Scan Context](https://github.com/irapkaist/scancontext)-based Loop detection and GTSAM-based Pose-graph optimization ## Features - An easy-to-use plug-and-play LiDAR SLAM - FAST-LIO2 and SC-PGO run separately (see below How to use? tab). - SC-PGO takes odometry and lidar point cloud topics from the FAST-LIO2 node. - Finally, an optimized map is made within the SC-PGO node. ## How to use? - The below commands and the launch files are made for playing the [MulRan dataset](https://sites.google.com/view/mulran-pr/home), but applicable for livox lidars in the same way (you could easily make your own launch files). ``` # terminal 1: run FAST-LIO2 mkdir -p ~/catkin_fastlio_slam/src cd ~/catkin_fastlio_slam/src git clone https://github.com/gisbi-kim/FAST_LIO_SLAM.git git clone https://github.com/Livox-SDK/livox_ros_driver cd .. catkin_make source devel/setup.bash roslaunch fast_lio mapping_ouster64_mulran.launch # setting for MulRan dataset # open the other terminal tab: run SC-PGO cd ~/catkin_fastlio_slam source devel/setup.bash roslaunch aloam_velodyne fastlio_ouster64.launch # setting for MulRan dataset # open the other terminal tab # run file_player_mulran (for the details, refer here https://github.com/irapkaist/file_player_mulran) ``` ## Utility - We support keyframe scan saver (as in .pcd) and provide a script reconstructs a point cloud map by merging the saved scans using the optimized poses. See [here](https://github.com/gisbi-kim/FAST_LIO_SLAM/blob/bf975560741c425f71811c864af5d35aa880c797/SC-PGO/utils/python/makeMergedMap.py#L7). ## Example results - [Tutorial video 1](https://youtu.be/nu8j4yaBMnw) (using KAIST 03 sequence of [MulRan dataset](https://sites.google.com/view/mulran-pr/dataset)) - Example result captures

