# BIG_MOOC **Repository Path**: ppandaer/BIG_MOOC ## Basic Information - **Project Name**: BIG_MOOC - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-08-16 - **Last Updated**: 2025-08-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # BIG_MOOC ## **Project Overview** This project is built to handle **real-time data ingestion**, **DL model training using BIG DATA**, and **recommendation** serving with a robust, scalable architecture. --- ## **Project resource** - **Notebooks + database's data**: https://drive.google.com/drive/u/2/folders/1naMgCV6hGWTB25WFfiNL0xF-kCNGqjwx --- ## **Project file structure** - BIG_MOOC - 📁 app (FastAPI app + Kafka consumers/producers) - kafka_producer (Listen to client, write data to broker) - kafka_consumer (Listen to broker and tranfer data to colab notebook) - readme.md: info about consumer and producer - 📁 database_initiator (cloud Cassandra data uploader) - 📁 data (table's data in csv format) - user.csv (user table) - course.csv (course table) - user_course.csv (user and course interaction with timestamp) - course_map.csv (course mapping for training process) - data_loader.py (Load data from data directory to db) - 📁 stream_process - pretrain_model (function, class to train model offline) - ddp_worker.py (worker on streaming batch) - main.py (main program to run distributed model and streaming data) - model.py (contains model to train both online and offline) - 📁 web - public (contains web media) - views (contains ejs file build web ui/ux + interact logic) - app.js (main app) - 📁 notebooks (notebook to run model on colab) - 📁 batch_process - 📁 BERT4Rec (contains files to train BERT4Rec model) - 📁 FM (contains files to train FM model) - 📁 notebooks (contains notebooks to run model) - load_recommendations.py (load recommendations predicted by model to database) - recommendations.csv (contains) - README.md: It's me :)) ---