# MOOCCubex-KGRec **Repository Path**: ppandaer/MOOCCubex-KGRec ## Basic Information - **Project Name**: MOOCCubex-KGRec - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-06-03 - **Last Updated**: 2025-06-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Introduction This is the Pytorch implementation for our paper at KDD'23: **Knowledge Graph Self-Supervised Rationalization for Recommendation**. ## Environment Dependencies You can refer to `requirements.txt` for the experimental environment we set to use. ## run KGRec Simply use: `python run_kgrec.py --dataset [dataset_name]` And the hyperparameters we use are fixed according to the dataset in `KGRec.py`. ## Baseline Models (KGCL, KGIN) We also implement KGCL and include the original KGIN release in our repository. For example, to run KGCL, you may execute: **alibaba-ifashion** `python run_kgcl.py --mu 0.7 --tau 0.2 --cl_weight 0.1` **last-fm** `python run_kgcl.py --mu 0.5 --tau 0.1 --cl_weight 0.1` **mind** `python run_kgcl.py --mu 0.6 --tau 0.2 --cl_weight 0.1` ## Citation Please kindly cite our work if you find our paper or codes helpful. ``` @inproceedings{yang2023knowledge, title={Knowledge graph self-supervised rationalization for recommendation}, author={Yang, Yuhao and Huang, Chao and Xia, Lianghao and Huang, Chunzhen}, booktitle={Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data mining}, pages={3046--3056}, year={2023} } ```