# StyleSwap **Repository Path**: ppandaer/StyleSwap ## Basic Information - **Project Name**: StyleSwap - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: HEAD - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-11-21 - **Last Updated**: 2024-11-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## StyleSwap: Style-Based Generator Empowers Robust Face Swapping (ECCV 2022) [Zhiliang Xu](https://scholar.google.com/citations?user=93ZNjNgAAAAJ&hl=zh-CN), [Hang Zhou](https://hangz-nju-cuhk.github.io/), [Zhibin Hong](https://scholar.google.com.au/citations?user=9IIxWBsAAAAJ), [Ziwei Liu](https://liuziwei7.github.io/), [Jiaming Liu](https://jmliu88.github.io/), Zhizhi Guo, Junyu Han, Jingtuo Liu, [Errui Ding](https://scholar.google.com/citations?user=1wzEtxcAAAAJ), [Jingdong Wang](https://jingdongwang2017.github.io/) --- ### [Project](https://hangz-nju-cuhk.github.io/projects/StyleSwap) | [Paper]() | [Demo](https://www.youtube.com/watch?v=bsHhzU8VSLo) In this work, we introduce a concise and effective framework named StyleSwap. Our core idea is to leverage a style-based generator to empower high-fidelity and robust face swapping, thus the generator’s advantage can be adopted for optimizing identity similarity. We identify that with only minimal modifications, a StyleGAN2 architecture can successfully handle the desired information from both source and target. --- Code will be released soon