# lightnn **Repository Path**: prg/lightnn ## Basic Information - **Project Name**: lightnn - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-30 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ![Version](https://img.shields.io/badge/Version-0.0.7-blue.svg) ![Version](https://img.shields.io/badge/Python-2.7-green.svg) ![Version](https://img.shields.io/badge/Numpy-1.13.0-yellow.svg) ![Version](https://img.shields.io/badge/Linux-x.x.x-red.svg) # lightnn The light(\`light\` means not many codes here) deep learning framework for study and for fun. Join us! ## How to install ### pip install `pip install lightnn` ### python install `python setup.py install` ## Modual structure ### models * Sequential * Model ### activations * identity(None) * sigmoid * relu * softmax * tanh * leaky relu * elu * selu * thresholded relu * softplus * softsign * hard sigmoid ### losses * MeanSquareLoss * BinaryCategoryLoss * LogLikelihoodLoss * FocalLoss ### initializers * zeros * ones * xavier uniform initializer(glorot uniform initializer) * default weight initializer * large weight initializer * orthogonal initializer ### optimizers * SGD * Momentum(Nestrov included) * RMSProp * Adam * Adagrad * Adadelta ### layers * FullyConnected(Dense) * Conv2d * MaxPooling * AvgPooling * Softmax * Dropout * Flatten * Activation * RNN * LSTM * GRU ### utils * label smoothing * sparse to dense ### gradient check * Dense * CNN and Pooling * RNN, LSTM and GRU ### examples * MLP MNIST Classification * CNN MNIST Classification * RNN Language Model * LSTM Language Model * GRU Language Model ## Document instructions * English for classes and functions * Chinese for annotation ## References 1. [Keras](https://github.com/fchollet/keras): a polular deep learning framework based on tensorflow and theano. 2. [NumpyDL](https://github.com/oujago/NumpyDL): a simple deep learning framework with manual-grad, totally written with python and numpy.([Warning] Some errors in `backward` part of this project) 3. [paradox](https://github.com/ictxiangxin/paradox): a simple deep learning framework with symbol calculation system. Lightweight for learning and for fun. It's totally written with python and numpy. 4. [Bingtao Han's blogs](https://zybuluo.com/hanbingtao/): easy way to go for deep learning([Warning] Some calculation errors in `RNN` part).