# fastapi-prometheus-grafana
**Repository Path**: py-service/fastapi-prometheus-grafana
## Basic Information
- **Project Name**: fastapi-prometheus-grafana
- **Description**: https://github.com/Kludex/fastapi-prometheus-grafana.git
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-08-20
- **Last Updated**: 2025-08-20
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
FastAPI + Prometheus + Grafana :tada:
This is a minimal setup that you can build to monitor your FastAPI microservice.
## Installation
There are only two prerequisites:
* [Docker](https://docs.docker.com/get-docker/)
* [Docker-compose](https://docs.docker.com/compose/install/)
Having both, you'll need to clone the repository:
``` bash
git clone https://github.com/Kludex/fastapi-prometheus-grafana
```
## Usage
You'll need to run the docker containers:
``` bash
docker-compose up
```
Now you have access to those three containers and their respective ports:
* Prometheus: http://localhost:9090/
* Grafana: http://localhost:3000/
* FastAPI: http://localhost:8000/
On the FastAPI, you can access `/metrics` endpoint to see the data Prometheus is scraping from it.
## How it looks like
## References
* [Prometheus FastAPI Instrumentator](https://github.com/trallnag/prometheus-fastapi-instrumentator)
* [Generate and Track Metrics for Flask API Applications Using Prometheus and Grafana](https://medium.com/swlh/generate-and-track-metrics-for-flask-api-applications-using-prometheus-and-grafana-55ddd39866f0)
* [PromQL for Humans](https://timber.io/blog/promql-for-humans/)