# PyTorch-Image-Dehazing **Repository Path**: pykite/PyTorch-Image-Dehazing ## Basic Information - **Project Name**: PyTorch-Image-Dehazing - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-07-16 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PyTorch-Image-Dehazing PyTorch implementation of some single image dehazing networks. Currently Implemented: **AOD-Net**: An extremely lightweight model (< 10 KB). Results are good. **Prerequisites:** 1. Python 3 2. Pytorch 0.4 **Preparation:** 1. Create folder "data". 2. Download and extract the dataset into "data" from the original author's project page. (https://sites.google.com/site/boyilics/website-builder/project-page). **Training:** 1. Run train.py. The script will automatically dump some validation results into the "samples" folder after every epoch. The model snapshots are dumped in the "snapshots" folder. **Testing:** 1. Run dehaze.py. The script takes images in the "test_images" folder and dumps the dehazed images into the "results" folder. A pre-trained snapshot has been provided in the snapshots folder. **Evaluation:** WIP. Some qualitative results are shown below: ![Alt text](results/man.png?raw=true "Title") ![Alt text](results/guogong.png?raw=true "Title") ![Alt text](results/test4.jpg?raw=true "Title") ![Alt text](results/test9.jpg?raw=true "Title") ![Alt text](results/test13.jpg?raw=true "Title") ![Alt text](results/test15.jpg?raw=true "Title")