# YOLOv8-streamlit-app **Repository Path**: pyxstudy/YOLOv8-streamlit-app ## Basic Information - **Project Name**: YOLOv8-streamlit-app - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2024-09-13 - **Last Updated**: 2024-11-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
## Introduction This repository supply a user-friendly interactive interface for [YOLOv8](https://github.com/ultralytics/ultralytics) and the interface is powered by [Streamlit](https://github.com/streamlit/streamlit). It could serve as a resource for future reference while working on your own projects. ## Features - Feature1: Object detection task. - Feature2: Multiple detection models. `yolov8n`, `yolov8s`, `yolov8m`, `yolov8l`, `yolov8x` - Feature3: Multiple input formats. `Image`, `Video`, `Webcam` ## Interactive Interface ### Image Input Interface  ### Video Input Interface  ### Webcam Input Interface  ## Installation ### Create a new conda environment ```commandline # create conda create -n yolov8-streamlit python=3.8 -y # activate conda activate yolov8-streamlit ``` ### Clone repository ```commandline git clone https://github.com/JackDance/YOLOv8-streamlit-app ``` ### Install packages ```commandline # yolov8 dependencies pip install ultralytics # Streamlit dependencies pip install streamlit ``` ### Download Pre-trained YOLOv8 Detection Weights Create a directory named `weights` and create a subdirectory named `detection` and save the downloaded YOLOv8 object detection weights inside this directory. The weight files can be downloaded from the table below. | Model | size