# dgcnn **Repository Path**: ran-yuqi/dgcnn ## Basic Information - **Project Name**: dgcnn - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-06-22 - **Last Updated**: 2025-06-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Dynamic Graph CNN for Learning on Point Clouds We propose a new neural network module dubbed EdgeConv suitable for CNN-based high-level tasks on point clouds including classification and segmentation. EdgeConv is differentiable and can be plugged into existing architectures. [[Project]](https://liuziwei7.github.io/projects/DGCNN) [[Paper]](https://arxiv.org/abs/1801.07829) [[Press]](http://news.mit.edu/2019/deep-learning-point-clouds-1021) ## Overview `DGCNN` is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentation and part segmentation. Further information please contact [Yue Wang](https://www.csail.mit.edu/person/yue-wang) and [Yongbin Sun](https://autoid.mit.edu/people-2). ## Author's Implementations The classification experiments in our paper are done with the pytorch implementation. * [tensorflow-dgcnn](./tensorflow) * [pytorch-dgcnn](./pytorch) ## Other Implementations * [pytorch-geometric](https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.EdgeConv) * [pytorch-dgcnn](https://github.com/AnTao97/dgcnn.pytorch) (This implementation on S3DIS achieves significant better results than our tensorflow implementation) ## Generalization under Corruptions The performance is evaluated on [ModelNet-C](https://github.com/jiawei-ren/ModelNet-C) with mCE (lower is better) and clean OA (higher is better). | Method | Reference | Standalone | mCE | Clean OA | | --------------- | ---------------------------------------------------------- | :--------: | :---: | :------: | | PointNet | [Qi et al.](https://arxiv.org/abs/1612.00593) | Yes | 1.422 | 0.907 | | DGCNN | [Wang et al.](https://arxiv.org/abs/1801.07829) | Yes | 1.000 | 0.926 | ## Real-World Applications * DGCNN has been successfully applied to [ParticalNet in Large Hadron Collider (LHC)](https://arxiv.org/abs/1902.08570). ## Citation Please cite this paper if you want to use it in your work, @article{dgcnn, title={Dynamic Graph CNN for Learning on Point Clouds}, author={Wang, Yue and Sun, Yongbin and Liu, Ziwei and Sarma, Sanjay E. and Bronstein, Michael M. and Solomon, Justin M.}, journal={ACM Transactions on Graphics (TOG)}, year={2019} } ## License MIT License ## Acknowledgement The structure of this codebase is borrowed from [PointNet](https://github.com/charlesq34/pointnet).