# Deep-Forest **Repository Path**: rayufo/Deep-Forest ## Basic Information - **Project Name**: Deep-Forest - **Description**: No description available - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-02-12 - **Last Updated**: 2024-06-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Deep Forest (DF) 21 =================== |github|_ |readthedocs|_ |codecov|_ |python|_ |pypi|_ |style|_ .. |github| image:: https://github.com/LAMDA-NJU/Deep-Forest/workflows/DeepForest-CI/badge.svg .. _github: https://github.com/LAMDA-NJU/Deep-Forest/actions .. |readthedocs| image:: https://readthedocs.org/projects/deep-forest/badge/?version=latest .. _readthedocs: https://deep-forest.readthedocs.io/en/latest/ .. |codecov| image:: https://codecov.io/gh/LAMDA-NJU/Deep-Forest/branch/master/graph/badge.svg?token=5BVXOT8RPO .. _codecov: https://codecov.io/gh/LAMDA-NJU/Deep-Forest .. |python| image:: https://img.shields.io/pypi/pyversions/deep-forest .. _python: https://pypi.org/project/deep-forest/ .. |pypi| image:: https://img.shields.io/pypi/v/deep-forest?color=blue .. _pypi: https://pypi.org/project/deep-forest/ .. |style| image:: https://img.shields.io/badge/code%20style-black-000000.svg .. _style: https://github.com/psf/black **DF21** is an implementation of `Deep Forest `__ 2021.2.1. It is designed to have the following advantages: - **Powerful**: Better accuracy than existing tree-based ensemble methods. - **Easy to Use**: Less efforts on tunning parameters. - **Efficient**: Fast training speed and high efficiency. - **Scalable**: Capable of handling large-scale data. Whenever one used tree-based machine learning approaches such as Random Forest or GBDT, DF21 may offer a new powerful option. For a quick start, please refer to `How to Get Started `__. For a detailed guidance on parameter tunning, please refer to `Parameters Tunning `__. Installation ------------ The package is available via PyPI using: .. code-block:: bash pip install deep-forest Quickstart ---------- Classification ************** .. code-block:: python from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from deepforest import CascadeForestClassifier X, y = load_digits(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) model = CascadeForestClassifier(random_state=1) model.fit(X_train, y_train) y_pred = model.predict(X_test) acc = accuracy_score(y_test, y_pred) * 100 print("\nTesting Accuracy: {:.3f} %".format(acc)) >>> Testing Accuracy: 98.667 % Regression ********** .. code-block:: python from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from deepforest import CascadeForestRegressor X, y = load_boston(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) model = CascadeForestRegressor(random_state=1) model.fit(X_train, y_train) y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("\nTesting MSE: {:.3f}".format(mse)) >>> Testing MSE: 8.068 Resources --------- * `Documentation `__ * Deep Forest: `[Paper] `__ * Keynote at AISTATS 2019: `[Slides] `__ Reference --------- .. code-block:: latex @article{zhou2019deep, title={Deep forest}, author={Zhi-Hua Zhou and Ji Feng}, journal={National Science Review}, volume={6}, number={1}, pages={74--86}, year={2019}} @inproceedings{zhou2017deep, Author = {Zhi-Hua Zhou and Ji Feng}, Booktitle = {IJCAI}, Pages = {3553-3559}, Title = {{Deep Forest:} Towards an alternative to deep neural networks}, Year = {2017}} Acknowledgement --------------- The lead developer and maintainer of DF21 is Mr. `Yi-Xuan Xu `__. Before the release, it has been used internally in the LAMDA Group, Nanjing University, China.