# sparse-structure-selection **Repository Path**: rayufo/sparse-structure-selection ## Basic Information - **Project Name**: sparse-structure-selection - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-10-27 - **Last Updated**: 2021-11-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # sparse-structure-selection This code is a re-implementation of the imagenet classification experiments in the paper [Data-Driven Sparse Structure Selection for Deep Neural Networks ](https://arxiv.org/abs/1707.01213) (ECCV2018).
## Citation If you use our code in your research or wish to refer to the baseline results, please use the following BibTeX entry. ``` @article{SSS2018 author = {Zehao Huang and Naiyan Wang}, title = {Data-Driven Sparse Structure Selection for Deep Neural Networks}, journal = {ECCV}, year = {2018} } ``` ## Implementation This code is implemented by a modified [MXNet](https://github.com/huangzehao/incubator-mxnet-bk) which supports [ResNeXt-like](https://github.com/facebookresearch/ResNeXt) augmentation. (This version of MXNet does not support cudnn7) ## ImageNet data preparation Download the [ImageNet](http://image-net.org/download-images) dataset and create pass through rec (following [tornadomeet's repository](https://github.com/tornadomeet/ResNet#imagenet) but using unchange mode) ## Run - modify ```config/cfgs.py``` - ```python train.py``` ## Results on ImageNet-1k