# sparse-structure-selection
**Repository Path**: rayufo/sparse-structure-selection
## Basic Information
- **Project Name**: sparse-structure-selection
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-10-27
- **Last Updated**: 2021-11-02
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# sparse-structure-selection
This code is a re-implementation of the imagenet classification experiments in the paper [Data-Driven Sparse Structure Selection for Deep Neural Networks
](https://arxiv.org/abs/1707.01213) (ECCV2018).
## Citation
If you use our code in your research or wish to refer to the baseline results, please use the following BibTeX entry.
```
@article{SSS2018
author = {Zehao Huang and Naiyan Wang},
title = {Data-Driven Sparse Structure Selection for Deep Neural Networks},
journal = {ECCV},
year = {2018}
}
```
## Implementation
This code is implemented by a modified [MXNet](https://github.com/huangzehao/incubator-mxnet-bk) which supports [ResNeXt-like](https://github.com/facebookresearch/ResNeXt) augmentation. (This version of MXNet does not support cudnn7)
## ImageNet data preparation
Download the [ImageNet](http://image-net.org/download-images) dataset and create pass through rec (following [tornadomeet's repository](https://github.com/tornadomeet/ResNet#imagenet) but using unchange mode)
## Run
- modify ```config/cfgs.py```
- ```python train.py```
## Results on ImageNet-1k